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Abstract

Traditional epidemic detection algorithms make decisions using only local infor-
mation. We propose a novel approach that explicitly models spatial informa-
tion fusion from several metapopulations. Our method also takes into account
cost-benefit considerations regarding the announcement of epidemic. We uti-
lize a compartmental stochastic model within a Bayesian detection framework
which leads to a dynamic optimization problem. The resulting adaptive, non-
parametric detection strategy optimally balances detection delay vis-a-vis prob-
ability of false alarms. Taking advantage of the underlying state-space structure,
we represent the stopping rule in terms of a detection map which visualizes the
relationship between the multivariate system state and policy making. It also
allows us to obtain an efficient simulation-based solution algorithm that is based
on the Sequential Regression Monte Carlo (SRMC) approach of Gramacy and
Ludkovski (SIFIN, 2015). We illustrate our results on synthetic examples and
also quantify the advantages of our adaptive detection relative to conventional
threshold-based strategies.

Keywords: Biosurveillance; quickest detection; regression Monte Carlo;
stochastic compartmental models;

1. Introduction

Infectious disease epidemics intrinsically unfold across both space and time.
As a result, biosurveillance algorithms need to integrate spatio-temporal data.
This is especially so in the context of statistical inference, whereby syndromic
surveillance at neighboring locales carries additional information that can be
fused for improved decision making in terms of initiating and organizing epi-
demic counter-measures. A crucial first step for response strategies is to iden-
tify, or detect, in real-time the epidemic outset. In this article, we propose
a methodology that allows for such optimal decision-making with spatial in-
formation fusion. Specifically, we investigate a model that combines quickest
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detection with a spatial metapopulation setup, integrating information received
from multiple geographic domains. To reflect the inherent uncertainty in epi-
demic evolution (which is amplified under partial information), we develop a
stochastic compartmental (or state-space) epidemic model, which allows us to
generate adaptive, nonparametric detection rules. Extant approaches largely
propose heuristic detection strategies, concentrating primarily on the inferen-
tial aspect of the statistical model [1, 2, 3, 4]. For instance, a typical approach
is to announce an epidemic as soon as the estimated number of infecteds in the
local population is above a fixed Ī. In contrast, we dynamically optimize the de-
tection strategy, to come up with a “best” detection rule within our mechanistic
outbreak model.

Traditional compartmental epidemic models deal with a single population;
the spatial aspect is treated by building a series of such single-population models
that are estimated/forecasted independently. This is also a common surveillance
approach, especially for recurring infectious epidemics, such as influenza-like
illness (ILI), dengue fever, or measles. For example, in the US the existing bio-
surveillance systems for flu operate primarily at the state level and are siloed
across states. This limitation of existing practice was brought into sharp relief
during the 2014 Ebola outbreak in West Africa. The epidemic has been accom-
panied by a dearth of reliable information, leading to extreme spread in forecasts
regarding the future course of the outbreak. In addition, numerous statistical
methods [5, 6, 7] were put forth attempting to infer in “real-time” the actual
size and parameters of the outbreak in different locales. However, nearly all
these methods were single-population, so that when trying for example to in-
fer the number of Ebola infecteds in Liberia, only Liberian data was utilized,
completely ignoring similar and highly relevant data from neighboring Guinea
and Sierra Leone. Similarly, at the more granular provincial level, data from
neighboring provinces was generally not used during estimation procedures.

For a less dramatic and perhaps more statistically convenient example, we
discuss the yearly influenza outbreaks in United States. Figure 1 illustrates
the spatial dynamics of ILI during the 2012-13 flu season. As can be observed,
the peak of the outbreak varied significantly (up to 6-8 weeks difference) across
different parts of the country. Nevertheless, there is a clear propagation, making
spatial information fusion desirable. Figure 1 indicates that the current, single-
population based detection protocols are not sufficient; for instance the fact
that there are increased ILI levels in Arizona is ought to be taken into account
when trying to detect or forecast the epidemic start in California. A further
important remark is that the illustrated spatial spread is year-specific, and in
other years rather different patterns may be observed.

1.1. Contributions

In this paper we formulate and analyze an epidemic detection problem within
a multi-population paradigm. To do so, we develop a reduced compartmen-
tal model that extends the classical Susceptible-Infected-Recovered (SIR) setup
to two population pools. Pools are interpreted as distinct geographic regions,
e.g. states or counties. To fix ideas, we consider the situation where the epidemic
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Figure 1: Spread of Influenza during the 2012-13 Flu season according to FluView CDC
data. The colors represent weekly ILI activity levels in terms of percentage of doctor visits
attributed to ILI relative to low-season baseline. Green indicates at/below mean, while shades
of red indicate outbreak activity (with darkest color corresponding to eight or more standard
deviations above the mean). Weeks are numbered from January 1, and are 12/3-9/2012 (Week
49), 12/31/2012-1/6/2013 (Week 1) and 1/21-27/2013 (Week 4), respectively. Data source:
http://www.cdc.gov/flu/weekly/pastreports.htm.

begins in Pool 1 and subsequently may be transmitted to Pool 2 via infecteds
that travel between the two pools. The aim of the policy-maker is to detect, as
soon as possible and in online fashion, the onset of epidemic in Pool 2.

To capture the inferential aspect, we assume that full information is avail-
able about the outbreak in Pool 1, but only partial information about Pool 2.
As a result, one has to make imperfect decisions and in particular address the
canonical trade-off between making announcements too early (so called “false
alarms”) and making decisions too late (“detection delay”). Indeed, if the de-
tection is too late, then a certain number of infections would be missed and it
would be harder to stop the epidemic from spreading. If the detection is prema-
ture, human, financial and reputational resources would be wasted. Therefore,
a careful trade-off between those costs should be done to balance costs due
to epidemic morbidity and costs arising from policy actions. We then use the
above cost analysis to quantify decision-making quality and to define optimality
of detection strategies.

Mathematically, we cast the online detection problem as a dynamic optimiza-
tion problem, connecting to the classical dynamic programming formulation [8]
in control theory. A major challenge with dynamic programming (which is
perhaps the prime reason for the lack in its uptake in the biosurveillance com-
munity) is computational bottlenecks due to the curse of dimensionality. Indeed,
the above optimization problem is nontrivial from several directions. First, be-
cause the underlying system is stochastic, the optimal solution is adaptive, i.e. a
function of the current system state. Consequently, there is no simple descrip-
tion to the resulting detection strategy which is instead summarized through
a detection map that translates system states into optimal detection decisions.
Second, the nonlinear dynamics of the SIR model preclude analytic solutions.
Crucially, there are no analytic expressions for the future distribution of the sys-
tem state, which necessitates the use of numerical approximations to solve the
optimization problem. Third, because the system state is multivariate and too
large to enumerate, the corresponding integrals are computationally demanding.
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However, taking advantage of the detection strategy structure, which re-
quires simply announcing at each stage whether the epidemic has reached Pool
2 or not, we implement an efficient numerical algorithm. Specifically, we rely
on the recent Sequential Regression Monte Carlo (SRMC) method of [9], which
blends modern statistical tools, including nonparametric regression and sequen-
tial design, with approximate dynamic programming, to drastically mitigate
issues of computational efficiency.

The main contributions of this work are then threefold. First, we propose
and analyze a multi-population extension of the classical SIR model, as well
as a reduced version suitable for the Bayesian detection framework. Second,
we develop and adapt an extension of the sequential regression Monte Carlo
(SRMC) approach to efficiently solve the dynamic optimization problem. Third,
we present a detailed investigation into the performance of the designed strategy,
in particular in comparison to conventional threshold-based strategies.

The organization of the paper is as follows. Section 2 formalizes the math-
ematical aspects of our model, including the detection setup. The stochastic
dynamics of the outbreak are rigorized in Section 3. Section 4 presents nu-
merical illustrations of our method as well as comparison with other methods.
Section 5 then describes the Sequential Regression Monte Carlo algorithm that
we developed for our setup. Section 6 provides the conclusion and the discussion
on future extensions of our framework.

1.2. Spatial Stochastic Epidemic Models

Mathematical models of infectious disease epidemics have become an impor-
tant tool in the arsenal of public health policy. In an idealized world, detection
reduces to the mathematical problem of clustering, tracking the health status of
the surveyed individuals and identifying unusual aberrations in either the tem-
poral or spatial dimensions. In reality, there is the additional aspect of missing
information which necessitates the application of statistical inference algorithms,
as well as a mathematical model for the epidemic. In the context of online in-
ference, a simple mechanistic approach that allows for maximum tractability
continues to be the most popular, and is also adopted here. Specifically, we rely
on the formalism of an SIR model [10] that implies proportional homogenous
mixing between infecteds and susceptibles within a population pool. Spatial het-
erogeneity is captured by incorporating meta-populations, also known as patch
models [11, 12, 13]. The multi-patch approach partitions the global population
into distinct discrete regions or pools, allowing for local spread of the epidemic
within each pool, as well as global transmission that is specified via a mobility
matrix. As in [11, 13] we assume that susceptibles are stationary, while infecteds
can move or travel between the pools, creating cross-infections.

Alternative frameworks for epidemic spread include point process models
[14], and network models [15] that provide more nuanced interaction between
individuals to mimic existing social structures, such as households, schools,
and workplaces. At even more detail, agent-based models [16] generate micro-
simulations that provide a detailed synthetic view for each individual and their
social interactions. Such models can also incorporate precise travel patterns
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[17]. However, the latter paradigms are geared towards realistic forecasting of
epidemic progress and are less suited for online detection due to intractable in-
ference in terms of observed data and the computational expenses in generating
micro-scenarios.

A variety of approaches exist for constructing outbreak detection rules, see
for example the recent survey by Shmueli and Burkom [18], and the mono-
graph by Lawson [19]. Quality control methods [20] introduced in the 1950s
form the simplest class of rules and continue to be common. Other heuristics
include moving-average tools [21], various scan statistics [22, 14], and branching-
process approximations [23]. More explicit cost-benefit analysis for the trade-off
between false alarms and detection delay can be applied using the Cumulative
Sum (CUSUM) framework [24]. CUSUM also underlies the early aberration
response system (EARS) employed by the Centers for Disease Control [25]. Al-
ternatively, Bayesian methods allow to further assess the uncertainty involved
in decision-making based on partial information. Two main types are hidden
Markov models [26, 27] and Bayesian hierarchical models [1, 28]. The Bayesian
paradigm translates epidemic data into the posterior probability of an outbreak.
To convert the latter into a detection rule, one typically employs a simple thresh-
old strategy. For example, in [1], the authors recommend “an alert for action if
the posterior probability is larger than 70%”. We further refine this approach
by deriving optimal, non-parametric detection strategies based on the inputted
cost-benefit parameters.

Detection can be seen as a basic form of epidemic response, and indeed our
computational methodology can be extended to this more general problem. In
that sense, this paper extends the first author’s previous work on stochastic
control methods for controlling epidemics [29, 30]. Similar to [29], we design
a Bayesian dynamic optimization algorithm for biosurveillance decision policy.
Other mathematically oriented studies that consider optimal control of epi-
demics include [31, 32].

In the context of detection with limited information, a spatial epidemic
model requires information fusion. Fusion of information channels for the pur-
pose of biosurveillance has been an area of intense research in the past decade.
On the one hand, novel information sources, such as social media [33] or inter-
net data [34] have created new opportunities for syndromic surveillance. On the
other hand, developments in statistical fusion techniques [18, 35, 36] have led to
new ways of integrating multivariate information streams. In particular, there
has been a lot of interest in online Bayesian approaches [2, 3, 23, 34, 37] that al-
low for predictive modeling and forecasting of epidemics. The above models all
focus on a single homogenous population with the different surveillance channels
complementing each other. In contrast, we consider multiple underlying pop-
ulation pools each with a distinct, but co-dependent information channel. In
terms of explicitly accounting for spatial propagation, our work is closest to [38]
who considered a spatial “wave” model for an epidemic. In the present article,
we connect this framework to the SIR context, modeling epidemic spread across
geographically-based population pools. The resulting decision strategy provides
insights into integrating data from multiple spatial locales for the purposes of
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detection, cf. Section 6 below.

2. Quickest Detection

2.1. Mathematical Model

We work with a state-space model, denoting by Xt the epidemic state at
times t = 0, 1, 2, . . .. A typical length of one time period in biosurveillance is
a week. The precise components of X will be specified later; abstractly X is
taken to be a stochastic Markov process taking values in a state space X ⊂ Rd,
and summarizes information about both Pool 1 and Pool 2. In particular, X

contains information about the number of infecteds I
(k)
t in Pool k = 1, 2 at time

t. The transition kernel of X is assumed to be time-stationary and is denoted
by ps(x|y) ≡ P (Xt+s = x|Xt = y), x,y ∈ X .

The aim of the policy maker is to detect the onset of epidemic in Pool 2. A
detection strategy is probabilistically represented as a dynamic “alarm” which
announces an outbreak in Pool 2, based on information gathered so far. Only
a single announcement is allowed; once announced, the detection problem is
assumed to be over. The set of such detection strategies is expressed through
the set S of F-stopping times, where Ft = σ(X0:t) is the information filtration
generated by X by time t. A strategy τ ∈ S is a random variable taking values in
τ ∈ {0, 1, 2, . . .}, such that {τ = t} ∈ Ft (this requirement captures the fact that
τ must be “online” in terms of the information available so far). Thanks to the
Markov property of X, the structure of τ can be summarized via a detection map.
Indeed, at each time-step there is the binary decision to either “announce” an
outbreak (subset S), or wait for another period (subset C). Since the evolution
of X is stationary in time, the corresponding partition of the state space is also
independent of t. Dynamically, this implies that τ announces the epidemic the
first time that the state X enters the region S ⊂ X ,

τ = inf{t : Xt ∈ S}. (1)

Equation (1) gives a one-to-one correspondence between detection strategies τ
and detection maps S. In other words, the detection strategies we consider are
of online feedback type, based on the trajectory of X.

As mentioned, the dynamic optimization objective consists in optimally trad-
ing off the concern of premature announcements against any potential delays.
These conflicting costs are measured through the immediate stopping cost d(x)
and the cost of waiting. The immediate costs are linked to the penalty for false
alarms, specified by a given constant CFA. We assume that CFA is paid if and
only if the epidemic has not yet reached Pool 2, so that

d(x0) := CFA · 1{I(2)0 =0}. (2)

Waiting costs are assumed to be proportional to detection delay, i.e. the time
between the outbreak reaching Pool 2 and outbreak announcement. Define θ to
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be the time when the second population gets infected from the first population,
i.e.

θ := inf{t : I
(2)
t−1 = 0 and I

(2)
t > 0}.

Then the detection delay is max(τ − θ, 0) and carries cost CDelay max(τ − θ, 0).
This is equivalent to charging waiting costs of CDelay1{I(2)t >0} at each step until

surveillance is terminated at the random instant τ , so that total waiting costs
on [0, τ ] are

c(X0:τ ) :=

τ−1∑
s=0

CDelay1{I(2)s >0} + CFA1{I(2)τ =0}. (3)

We will refer to the costs d(·) and c(·) as the immediate cost and the future
cost, respectively.

Remark 1. Note that detection costs are intrinsically defined in terms of the
count of infecteds in Pool 2, I(2), which is assumed to be unavailable to the
policy-maker. Below we will operationalize (2) and (3) by taking conditional
expectation with respect to information that is available, see (18)-(17).

The aim of outbreak detection is to pinpoint θ, i.e. ideally one takes τ = θ.
However, this is not possible if only partial information is available about X,

specifically about I
(2)
t . When τ and θ are different, CDelay penalizes the event

{τ > θ}, and CFA penalizes {τ < θ}. The cost structure in (3) is then a dynamic
counterpart of the usual Type-I and Type-II errors in hypothesis testing.

2.2. Detection Problem

Our detection problem is formalized as minimizing the expected future cost
over all possible stopping times τ [39], i.e. an optimal stopping problem. Namely,
we define the value function V as

V (x0) := inf
τ∈S

E [c(X0:τ )|X0 = x0] , (4)

where x0 is the initial state. Assuming the infimum in (4) is achieved, the
dynamic programming principle [39] implies

V (x0) = min (d(x0), E [V (X1)|X0 = x0]) , (5)

where the conditional expectation operator is

E[V (X1)|X0 = x0] =

∫
V (x)p1(x|x0)dx.

The minimum operator in (5) corresponds to the idea that it is optimal to
declare an outbreak if the immediate cost is smaller than the future cost, i.e. the
likelihood of false alarms is dominated by the cost of waiting. The former case
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is equivalent to the expectation of the value function at time 1 being greater
than the immediate cost, and therefore we may classify the stopping region via

S := {x : E [V (X1)|X0 = x]− d(x) > 0} . (6)

Hence, in terms of the above detection map, our goal is to optimally partition
X = S∪C into two regions, such that S consists of all initial states x0 where it
is optimal to declare the epidemic, and C is its complement, where it is optimal
to wait.

2.3. Reduction to a Model Predictive Control Problem

The characterization in (5) is implicit, since it features V (·) on both sides of
the expression. Specifically, the value function V corresponds to a fixed point [8]
of the functional operator L, defined by (Lv)(x) := min (d(x), E [v(X1)|X0 = x]).
To solve for V (x), a basic strategy is then to apply Picard-type fixed-point it-
erations. In other words, given some initial guess V (0)(x), we build a sequence
of approximations via V (k) := LV (k−1), or explicitly,

V (k)(x0) = min
(
d(x0), E

[
V (k−1)(X1)|X0 = x0

])
. (7)

However, to guarantee the convergence of V (k) does not appear tractable,
and the practical performance of (7) is very sensitive to the initial guess V (0). To
circumvent this challenge, we rely on the concept of model predictive control. To
wit, we introduce an auxiliary parameter t which can be intuitively thought of
as forward time. The value functions V (t, ·) and detection maps St are now also
indexed by t. We start with the trivial initial condition V (0,x) := d(x), which
corresponds to S0 ≡ X . Next, mimicking the classical dynamic programming
on finite horizon, we define

V (t,x0) := min (d(x0), E [V (t− 1,X1)|X0 = x0]) , t = 1, 2, . . . . (8)

Define the Q-value, also known as costs-to-go by

q(t,x) := E[V (t− 1,X1)|X0 = x]. (9)

Then the stopping set at iteration t is

St := {x0 ∈ X : q(t,x0)− d(x0) > 0} , t = 1, 2, . . . . (10)

We may “unroll” the expectation encoded in V (t− 1,X1) to write

q(t,x0) = E [V (t− 1,X1)|X0 = x0] = E [c(X0:τ(t))|X0 = x0] , (11)

where τ (t) = min{s ≥ 1 : Xs ∈ St−s}. This justifies the interpretation of q(t, ·)
as costs-to-go, since c(X0:τ(t)) are indeed the future costs associated with not
stopping immediately.

Figure 2 illustrates the first step of the recursion (8) at t = 1. In the plot
we compare

E [V (0,X1)|X0 = x] = E[d(X1)|X0 = x]
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Figure 2: Detection strategy at iteration t = 1. The example is based on the model of
Section 4, with parameters in Table 1. In the plot, the state of Pool 1 is held fixed at
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against d(x). As discussed, the epidemic is announced when E [V (t− 1,X1)|X0 = x] >
d(x) (the right side of the plot). In the opposite case (the left side of the plot),
the optimal decision is to wait. As shown by the Figure, the structure of the
decision map is driven by the regions where these two quantities are equal to
each other, which corresponds to the detection boundary,

∂St := {x : E [V (t− 1,X1)|X0 = x] = d(x)} . (12)

The stopping region St is our detection rule at iteration step t. It can
be characterized as the optimal detection rule among all strategies in S(t) =
{τ ∈ F : τ ≤ t} that are upper-bounded by t (By construction, τ (t) ≤ t). As
t → ∞, we have that the set of admissible rules expands S(t) ↗ S, and hence
we expect that St → S and V (t,x) → V (x) . Intuitively, for large t, the
recursively defined (8) converges to a stationary case that ought to be the fixed
point defining V (x) in (4). The above convergence can be improved via model
predictive control (also known as receding horizon control) [40] which applies

the fixed detection map Ŝ(k), rather than the time-dependent Ŝt at each step,
cf. Section 5.1.

3. Epidemic Model

3.1. Multiple Population SIR model

A susceptible-infected-recovered (SIR) model provides an aggregate “grav-
ity” view of the epidemic by focusing on three basic types of individuals in the
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Figure 3: Stochastic SIR epidemic model in two populations.

population: susceptible, infected and recovered. Susceptible individuals are the
ones who haven’t experienced the disease yet. Interaction between an infected
and susceptible individuals can lead to an infection. Thus, contacts stochas-
tically generate new infecteds who in turn can further infect other susceptible
individuals. After some time an infected individual recovers and becomes im-
mune (i.e. becomes a Recovered): he/she can no longer infect others or get
infected.

While the detection problem is specified at the discrete instances t = 1, 2, . . .,
for describing outbreak dynamics it is more convenient to work with continuous-
time dynamical systems. As in [10, Ch. 6], we thus first recall the multi-
type stochastic SIR model in continuous time. The overall epidemic state

at epoch t ∈ R+ is denoted by {St, It,Rt}, where St = {S(1)
t , . . . , S

(K)
t },

It = {I(1)
t , . . . , I

(K)
t } and Rt = {R(1)

t , . . . , R
(K)
t } are vectors denoting the count

of susceptible, infected and recovered individuals in each of 1 ≤ k ≤ K meta-
populations. We assume that the pool size of each meta-population is fixed at

M (k) = S
(k)
t + I

(k)
t +R

(k)
t . As a result, we omit further mention of R

(k)
t since it

can be found from R
(k)
t = M (k) − S(k)

t − I(k)
t .

The continuous evolution of the state process {St, It} ∈ {(s, i) : sk + ik ≤
M (k) ∀k ≤ K} is described through Markov chain or stochastic kinetic system
language. Namely, the epidemic state is piecewise constant in time. Next, there
are 2K+K(K−1) possible transitions, described by the reaction channels [41]:

Infection S(k) + I(k) → 2I(k) w/rate βkI
(k) S(k)

M(k)

Transmission S(k) + I(k′) → I(k) + I(k′) w/rate βk,k′I
(k′) S(k)

M(k)

Recovery I(k) → ∅ w/rate γI(k)


(13)

where each reaction is further indexed by 1 ≤ k ≤ K and k′ ≤ K, k′ 6= k.
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The first transition represents an infection of a susceptible individual by
an infected individual from the same pool k. This transition happens at rate

βkI
(k)
t

S
(k)
t

M(k) , where 1 ≤ k ≤ K and βk is a contact rate of infected and susceptible
individuals within the k-th meta-population.

The second transition is a transmission: an infection of a susceptible in-
dividual from pool k by an infected individual from a different pool k′. The

frequency of such infections is βk,k′I
(k′)
t

S
(k)
t

M(k) , where 1 ≤ k, k′ ≤ K and βk,k′ is a
contact rate of infected and susceptible individuals from different populations.
Since contacts between individuals from different populations are less frequent,
βk,k′ � βk′ . To reduce the number of parameters, we thus assume that cross-
population interactions occur at rate βk,k′ ≡ αβk′ , where α is the proportion
of “travelers” in each pool. Thus, cross-contacts happen at the fraction α of a
contact rate within one population; a typical range is α ∈ [0.01, 0.2].

The last transition in (13) is a recovery and subsequent immunity of an

infected individual in a population k. The rate of transition is γI
(k)
t , where γ

is a recovery rate, independent of the pool index k. This can be interpreted
as individuals staying infected for an Exponentially distributed time with mean
1/γ.

In this paper we focus on two-population models, positing that the outbreak
begins in Pool 1 and may subsequently spread to Pool 2, where it is to be
detected. Accordingly, we will be fusing information from Pool 1 and Pool 2
to identify the onset of epidemic in Pool 2. We assume that the two pools
have similar characteristics, so that all parameters are homogenous in k = 1, 2.
Thus, the two-population SIR model, shown in Figure 3 has 3 parameters α
– the mixing parameter between two populations, β – the within-pool contact
rate of infected and susceptible individuals, and γ – the recovery rate. These
parameters are assumed to be known and are a function of the modeled disease
family (e.g. influenza or dengue fever), the demographics and public health
characteristics of the populations, and the travel patterns across pools.

3.2. Partial Observation

Under full observations the detection problem (4) would be trivial, since one

can directly track I
(2)
t and declare an outbreak as soon as there any infecteds in

the second pool. However, realistically I(2) is not observed. Some of the reasons
include mis-diagnoses among infecteds, patients not seeking care, false positives,
mis-reporting or lack of reporting of epidemiological data, etc. Consequently,
we assume that the true size of the S/I/R compartments in Pool 2 is not known.

To simplify the presentation, we assume that I
(1)
t is observed in Pool 1, perhaps

due to better epidemiological surveillance in that pool.
In our detection problem, the main event of interest is the presence of any

infecteds in Pool 2, {I(2)
t > 0}. Accordingly, we consider P̃t = P (I

(2)
t > 0|Gt),

the posterior probability that the epidemic started in the second population
given the limited knowledge about it available by time t, here summarized by
some information set Gt. Depending on assumptions about the observations
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structure, P̃t may be available in closed form (e.g. through Bayesian conju-
gate updating [30, 2]) or may have to be only approximately computed through
e.g. particle filtering methods [3, 4]. The latter method, which computes the

whole posterior distribution πt ∼ I
(2)
t |Gt, is computationally expensive, while

conjugate updating requires carrying several sufficient statistics about the pos-

terior of I
(2)
t . In either case, P̃t on its own is not Markovian, and hence does

not possess simple dynamics. Therefore we propose a model that works with a
simplified, Markovian version of P̃t, which we denote as Pt.
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Figure 4: Posterior probability that the epidemic started in the second population P̃t vs. time
t, where the dashed line represents the actual start time θ of outbreak in Pool 2. The plot was
constructed using particle filtering using the following model parameter values: β = 0.75, α =
0.01, γ = 0.5, M(1) = M(2) = 2000.

Figure 4 shows a sample scenario of the evolution of P̃t in a partially observed
framework. The plot was generated using particle filtering and used the two-
pool model (13) with noisy Poisson-type observations in each pool [42]. We
observe that P̃t tends to drift up (i.e. posterior probability of outbreak increases
over time) and eventually hits 1.

3.3. Reduced Model

Our reduced model consists of the state of epidemic in the first population{
S

(1)
t , I

(1)
t

}
and a process Pt that is interpreted as the probability that the

epidemic reached Pool 2 conditional on the information Gt = σ(S
(1)
0:t , I

(1)
0:t ) from

Pool 1. The first two components S
(1)
t and I

(1)
t come from a one-population

SIR model (see the definition of SIR model for K = 1 in Section 3.1). To
prescribe the dynamics of the pseudo-posterior Pt, we decompose the event

{I(2)
t > 0} ≡ {θ ≤ t} into two cases: the event that the epidemic already

started at time t − 1 (i.e. θ ≤ t − 1), and the event that it starts at t = θ. We
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also add some stochastic noise to denote exogenous fluctuations in our posterior
estimates regarding the second pool. In total, we thus assume that

Pt = Pt−1 + P (I
(2)
t−1 = 0 and I

(2)
t > 0|Gt−1) + δt, (14)

where δt are i.i.d. noise terms. Intuitively, the probability of outbreak has a
positive drift over time, and the drift is precisely the posterior probability of
the outbreak beginning during the current period, {θ ∈ [t− 1, t]}.

From the SIR dynamics, the probability that {θ ∈ [t − 1, t]} conditional
on Pool-1 observations up to previous stage t − 1, is equal to the probability
that an infected from Pool 1 interacts with a susceptible from Pool 2, times
the conditional probability that {θ > t − 1}. The former happens with rate

αβI
(1)
s

S(2)
s

M(2) , s ∈ [t−1, t], while the latter event is the complement of {θ ≤ t−1}
and hence has probability 1−Pt−1. Using the fact that conditional on {θ ≥ t},
M (2) = S

(2)
t−1, and making the transition rate constant on [t− 1, t] we obtain

P (θ ∈ [t− 1, t]|Gt−1) ' αβI(1)
t−1(1− Pt−1). (15)

To guarantee Pt ∈ [0, 1] is interpretable as probability we confine it to [0, 1],
yielding

Pt :=

{
0 ∨ (Pt−1 + αβI

(1)
t−1(1− Pt−1) + δt) ∧ 1, if Pt−1 6= 1

1, if Pt−1 = 1
(16)

In our simulations we use centered Gaussian noise δt
i.i.d∼ N (0, σ2

δ ) with variance
σ2
δ , however it can take any distribution. Note that Pt = 1 is an absorbing

state, representing certainty that the outbreak reached Pool 2, while Pt = 0 is
a boundary case, since even if it is certain that the outbreak is currently not in
Pool 2, it can still get cross-infected in the future. Similar features hold for the
true posterior probability P̃t, cf. Figure 4. Alternative models for probability of
outbreak Pt, are discussed in Section 6.

Remark 2. Note that (16) is in discrete-time; to connect to the continuous-
time dynamics of SIR one could take the limit as the time increment goes to

zero, obtaining a diffusive model dPt = αβI
(1)
t (1− Pt) dt+ δdWt where (Wt) is

a Brownian motion. However, since detection is assumed to take place only at
instances t = 1, 2, . . ., we prefer to work with (16) as is.

3.4. Detection within the Reduced Model

To sum up, the developed reduced 2-pool model has a 3-dimensional state

{X}t =
(
S

(1)
t , I

(1)
t , Pt

)
with state space

X := {(s, i, p) : s, i ∈ N, s+ i < M (1), p ∈ [0, 1]}.

Figure 5 shows a few sample trajectories of X to illustrate the resulting dynam-
ics.
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Figure 5: Three sample trajectories of X with the initial condition S
(1)
0 = 1995, I

(1)
0 = 5,

P0 = 0 and outbreak parameters from Table 1. Left panel is the plot of {I(1)t }, the number of
infecteds in the first population, and right panel is the plot of {Pt}, the posterior probability
that the epidemic started in the second population. The vertical dotted lines represent times
when Pt hits 1 and outbreak becomes certain.

Our detection problem (10) relies on the computation of the immediate and
future expected costs E [c(X0:τ )|X0] and d(X0). Re-writing the definitions of

immediate and future costs (2) and (3) in terms of the event {I(2)
t > 0}, and

taking conditional expectation we obtain:

d(X0) := CFA(1− P0), (17)

c(X0:τ ) :=

τ−1∑
s=0

CDelayPs + CFA(1− Pτ ), (18)

where τ ∈ S. Rather than in terms of the unobserved I(2), the above expressions
are now given in terms of the component Pt, allowing to measure detection
costs within the X-model. Notice that d(X0) is a function of P0 and c(X0:τ ) is
a function of the future trajectory {Ps, s = 0, . . . , τ}.

Our goal is to find the detection maps Ŝt for t = 1, 2, . . . , defined recursively
in (10). To do so, at each step we need to evaluate E [V (t− 1,X1)|X0 = x] and
d(x). The immediate cost d(x) can be computed exactly via (17). However,
the expectation E [V (t− 1,X1)|X0 = x] can not be computed analytically since
there are no closed-form expressions for the distribution of X0:τ . In Section
5.3 we present the sequential Regression Monte Carlo approach which offers
an efficient way to empirically estimate Ŝt based on synthetically generated
epidemic scenarios. We then use Model Predictive Control to estimate the
stationary detection map S.
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4. Case Study

To illustrate the dynamic detection strategy within our 2-pool model, in this
section we present a detailed case study. Table 1 summarizes the parameters
used. Epidemic parameters are taken to be β = 0.75 and γ = 0.5. Thus, the
initial reproduction ratio is R0 = β/γ = 1.5, which is a moderately infectious
epidemic. We assume that the pool mixing parameter is α = 0.01, which is
reasonable for pools representing well-separated cities or counties. The inference
noise in (16) is taken to be Gaussian with variance δt ∼ N (0, σ2

δ = 0.012). For
the detection costs in (17)-(18), we take without loss of generality CDelay = 1
and fix CFA = 20. As we will see, this corresponds to a moderate penalty for
false alarms.

Epidemic: M (1) = 2000 S
(1)
0 = M (1) − I(1)

0 σδ = 1/100
β = 0.75 α = 0.01 γ = 0.5

Costs/Penalties: CFA = 20 CDelay = 1

Table 1: Outbreak and costs parameters for the case study of Section 4. σδ refers to the noise
in P , cf. (16).

Figure 6: Left panel: detection rule SLP20 in terms of I(1) and P . The detection boundary
∂SLP20 is shown with the solid curve. We also show the experimental design Z that was
used, illustrated with the scatterplot. Size of pixels corresponds to the number of times that
neighborhood was sampled. Right panel: standard errors v̂(x) from (27). Observe lower
standard errors in regions where the design Z is more dense.

So far the case study features a three-dimensional state {S(1), I(1), P}, so
that the resulting detection maps are in 3-D. To aid visualization, we consider
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a variant with a reduced dimension. Namely, we drop the component S(1)

measuring the number of infecteds in Pool 1. Indeed, at the early stages of

the outbreak the ratio S
(1)
t /M (1) is approximately one. As a result, one may

assume that the rate of infections in Pool 1 is simply βI
(1)
t , which corresponds

to the classical branching process epidemic model [10]. It is known [43] that

this approximation remains valid up to t = O(log(M (1)) by which time, I
(1)
t =

O(
√
M (1)).; therefore it works especially well in large populations, and hence

is termed a large-population (LP) approximation. The LP model only has two
dimensions, X′ := {I(1), P} allowing to plot the corresponding 2-D stopping set
SLP .

Figure 6 shows SLP generated under the conditions of Table 1 and the
above large population assumption. As expected, epidemic detection is triggered

once the posterior probability Pt of {I(2)
t > 0}, is high enough. However, we

observe that detection is also highly sensitive to values of I
(1)
t ; for instance

detection is progressively delayed as I
(1)
t gets bigger. This dependence between

the two pools in terms of decision making illustrates the underlying cross-pool
information fusion. Intuitively, detection should take place once Pt is high
enough. However, conditional on a fixed Pt, larger number of Pool 1 infecteds
makes an impending outbreak in Pool 2 more likely, lowering waiting costs.
Hence, the detection boundary curves in I(1). Mathematically, recall that in

(16), the growth rate of P increases in I(1). As a result, for large values of I
(1)
t ,

one may expect that the next-stage Pt+1 will also be large, i.e. move into the
“Announce” region quicker. This again lowers the waiting costs and therefore
delays announcement.

4.1. Evaluating Detection Rules

Figure 7 shows dynamic decision-making in the LP model through a collec-

tion of generated trajectories of X′ = {I(1)
t , Pt} and their corresponding detec-

tion times τLP , the first time the state process X′ enters the stopping set SLP .
We observe that the trajectories generally move north-east, as both P and I(1)

tend to increase. However, the rate at which they grow and the precise direction
are uncertain and vary across scenarios. Consequently, at detection, both PτLP

and I
(1)

τLP
have a nontrivial distribution.

To better understand the detection map SLP , we analyze the resulting de-
tection strategy given by τLP and compare it to alternatives. Two classes of
simpler detection rules are Threshold-P and Threshold-t. The Threshold-P
strategy announces an outbreak as soon as Pt ≥ P̄ for a given threshold P̄ .
Hence, it acts solely based on local (posterior) information about Pool 2. This
mimics the CDC policy [25] of announcing an epidemic when the number of
infecteds in Population 2 crosses some pre-specified level. In contrast to the
fused detection strategy with a curved detection boundary which jointly takes

into account both Pt and I
(1)
t , Threshold-P rule only uses Pt for detection deci-

sions, yielding a flat, horizontal detection boundary in Figure 7. The threshold-t
strategy is a simple non-adaptive strategy that announces at the fixed stage t̄.
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Figure 7: Fifty sampled epidemic trajectories {I(1)t , Pt}, t = 1, . . . , τ emanating from the

initial state I
(1)
0 = 10 and P0 = 0.1. We show the LP detection boundary (namely ∂SLP20 ),

as well as a threshold strategy that announces epidemic as soon as Pt ≥ P̄ = 0.8. Lastly, the
red crosses denote the locations of the trajectories at t = 8, which is the basis of the alternate
Threshold-t strategy.

It is illustrated in Figure 7 where we record the joint distribution of I
(1)
t̄ , Pt̄ at

t̄ = 8.

Detection time τ Realized Cost Q
PFA E[1− Pτ ]

Mean StDev. Mean StDev.

Optimal 8.86 2.59 6.53 1.70 8.2%
LP 9.32 2.95 6.57 1.81 6.4%

Threshold-P 7.88 2.85 7.03 1.58 15.3 %
Threshold-t 8.00 N/A 7.18 2.21 14.4 %

Table 2: Comparison of Optimal, Large Population(LP), Threshold-P with P̄ = 0.8 and
Threshold-t with t̄ = 8 strategies. Statistics are based on 1000 synthetic trajectories of
{I(1), S(1), P}, where Q = c(X0:τ(t) ).

Returning to the full 3-D model with state X we evaluate the resulting
optimal detection strategy τ∗ and proceed to compare its performance against
the other potential detection rules discussed above. Specifically, the first two
alternatives are a Threshold-P rule with P̄ = 0.8 (declare an epidemic if its
probability is above 80%) and a Threshold-t strategy with t̄ = 8. The latter
was found to be the best strategy among those that declare outbreak at a fixed
stage. The last alternative is the LP strategy τLP from last section. Recall that
τLP makes decisions while ignoring S(1). In that sense, when applied to the
full 3-D model, it gives a simplified, but still adaptive, detection rule. To recap,
Threshold-t strategy is completely non-adaptive; Threshold-P only relies on Pt;

LP relies on {I(1)
t , Pt}, and Optimal strategy uses all of {S(1)

t , I
(1)
t , Pt}.

To compare the performance of the above competing strategies, we fixed

the initial condition at S
(1)
0 = 1990, I

(1)
0 = 10 and P0 = 0.1, so that there
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Figure 8: Summary statistics of different detection strategies constructed from 1000 sample
epidemic trajectories. The LP detection strategy is from Figure 6. Right: Distribution of
detection times τ ; Left: Distribution of posterior probability of outbreak in Pool 2 at detection
time, Pτ .

are 10 infecteds in Pool 1 and 10% prior probability of epidemic already in
Pool 2. Then we simulated 1000 epidemic trajectories {xn0:τ}, n = 1, . . . , 1000,
emanating from this fixed initial condition up to the detection time τ (which
depends in turn on the strategy used). Table 2 then presents the resulting
summary statistics based on these frozen 1000 trajectories (note that there are
no analytic formulas to obtain these metrics, so we have to resort to simulation).

The comparison is done in terms of several different metrics, including real-
ized detection costs c(X0:τ(t)), distribution of detection times τ , and frequency
of false alarms, represented by d(Xτ ) = 1 − Pτ in our setup. As expected,
the Optimal strategy with detection time τ∗ that directly optimizes the cost-
benefit in the full model performs best. The corresponding expected costs are
V (x0) ' 6.53, with average detection time E[τ∗] ' 8.86. It outperforms the
Threshold-P strategy by about 7% in terms of reducing detection costs, and
the Threshold-t strategy by about 9%. These are nontrivial cost savings which
highlight the benefit of information fusion. Table 2 also shows that the 2-D LP
approximation performs well in this example, generating very similar expected
costs. At least for this case study, detection happens early enough that the
branching process approximation of the outbreak works fine.

Recall that our model is stochastic and generates adaptive detection strat-
egy. Hence the detection time τ∗ is a random variable. As shown in Table
2, the corresponding standard deviation StDev(τ∗) ' 2.6 is substantial. This
illustrates the sub-optimality of the Threshold-t strategy that stops at a fixed
t̄ with StDev(t̄) = 0 trivially. Not surprisingly, the ability to delay or speed up
outbreak announcements based on latest data are crucial for optimizing policy
making. We also note that compared to the Threshold-P strategy, the Optimal
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strategy tends to announce later, E[τ∗] ' 8.86 > 7.88 ' E[τThr−P ], this is also
confirmed by the respective histograms of τ∗ and τThr−P in Figure 8. However,
we emphasize that the detection rules do not have a clear ordering. In other
words, the random variables τ∗, τThr−P , etc., cannot be directly compared.

A complementary metric of detection quality is provided by the probability of
false alarms, PFA := E[1−Pτ ]. For the optimal strategy we find that PFA∗ =
8.2%. In contrast, for Threshold-P strategy, we have PFAThr−P = 15.3%. Note
that because we use a discrete-time model, at time of detection Pτ will strictly
exceed the threshold P̄ = 0.8, hence PFAThr−P < 1 − P̄ . The histograms
of Pτ are shown in Figure 8 and confirm the qualitative difference among the
detection strategies. The Threshold-P strategy only stops once Pt > P̄ , so that
Pτ has support on roughly [0.8, 0.9]. In contrast, the adaptive Optimal (and LP)
strategies, have a much wider range for Pτ . In particular, sometimes epidemics
are announced even before Pt hits the level 0.8.

Figure 9: Relative realized detection costs across different strategies. The histogram shows the
distribution of the difference in costs along the 1000 simulated trajectories, namely c(x0:τ∗ )−
c(x0:τThr−P ), and c(x0:τ∗ )− c(x0:τThr−t ).

To further quantify the improvement provided by the Optimal detection rule,
Figure 9 gives a scenario-by-scenario comparison of relative realized detection
costs. Note that in hindsight, τ∗ may sometimes perform worse that τThr−P

or even τThr−t. Figure 8 plots the histogram of the difference in costs for each
trajectory xn0:t, n = 1, . . . , 1000, namely c(x0:τ∗), c(x0:τThr−P ), and c(x0:τThr−t).
We find that the costs computed with Optimal/LP strategies are smaller than
costs computed with Threshold strategies for more than 80% of the trajectories.

To sum up, we observe material improvement from using Optimal detection
rule in this case study. Moreover, the obtained detection rule is substantially dif-
ferent from the thresholding protocol. On the one hand, the adaptive detection
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time τ∗ exhibits a wide spread and is highly non-constant across trajectories.
On the other hand, the posterior probability of false alarms Pτ∗ is also strongly
variable. As a result, the average frequency of false alarms is drastically lowered
relative to Threshold-P strategy, reducing overall expected costs.

4.2. Effect of Detection Cost Parameters

Figure 10: Boundaries of detection maps ∂SLP20 constructed based on different penalties for
false alarm, CFA.

CFA
τ∗ Cost

PFA = E[1− Pτ∗ ]Mean StDev. Mean StDev.

10 6.84 1.62 5.32 0.99 21.4 %
20 8.87 2.60 6.54 1.71 8.3%
30 9.61 2.79 7.21 2.22 5.3%

Table 3: Summary statistics of the Optimal detection strategy τ∗ for different false alarm
penalties CFA.

The main parameter in our quickest detection setup is the ratio of the cost
of false alarms and the cost of detection delay, CFA/CDelay. A high ratio pe-
nalizes premature announcements and requires more care in the assessment of
the potential outbreak in Pool 2. A low ratio invites more aggressive actions.
To better understand the role of this ratio, in Figure 10 we show several detec-
tion boundaries ∂SLP corresponding to varying CFA, while CDelay = 1 is kept
fixed. As expected, a lower CFA enlarges the Announce set S. In particular,
the boundary ∂S shifts down and to the right. As a result, starting from a fixed

location (I
(1)
0 , P0), the stopping set S will be reached sooner, so that τ decreases
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(in the sense of stochastic dominance for the corresponding random variables).
This is confirmed in Table 3 that reports statistics for τ∗ and various CFA. We
find that E[τ∗] = 8.86 when CFA = 20, but is only E[τ∗] = 6.84 for CFA = 10.
Simultaneously, the frequency of premature announcements PFA will increase.
The precise relationship is however nonlinear. Lowering CFA from 20 to 10, the
PFA rises dramatically to about 21% from 8%. Conversely, raising CFA to 30
only reduces PFA to 5.3%. A common approach in the decision literature is
to select a priori a desired level of PFA (say PFA = 10%) and then numeri-
cally solve the inverse problem to obtain the corresponding CFA and hence the
corresponding detection rule S.

5. Numerical Implementation

To find the detection maps Ŝt for t = 1, 2, . . . , defined recursively in (10)
we use approximate dynamic programming techniques. In particular, we rely
on the Regression Monte Carlo approach [44, 9] to approximate the conditional
expectation map over x ∈ X .

5.1. Regression Monte Carlo

For the remainder of this section the auxiliary “time” variable t is fixed and
the goal is to approximate the conditional expectation q(t,x) := E[c(X0:τ(t) |X0 =
x] in (11). Recall that at step t, detection rules are restricted to satisfy τ (t) ≤ t.
The Regression Monte Carlo technique approximates q(t, ·) by a predicted sur-
rogate value q̂(t, ·) which is based on a statistical regression framework.

The surrogate prediction is built using data simulated from the specified
model. To do so, a design Z := {xn0 , n = 1, . . . , N} of N locations is first
generated. Next, we generate the corresponding scenarios {Xn0:t} with the initial
value Xn0 = xn0 , one scenario for each initial location. Define

τnt := min{s ≥ 1 : Xns ∈ St−s}, (19)

which leads to path-wise waiting costs qn := c(Xn0:τnt
) using formula (3) on the

n-th scenario. The aggregate dataset is

Z = {(xn0 , qn) , n = 1, . . . , N} . (20)

The construction of q̂(t, ·) then involves response surface modeling, i.e. de-
termining the relationship between the initial condition x and the mean of the
sampled Q|x ≡ c(X0:τt). Statistically, we start with

Q|x = q(t,x) + ε, (21)

where q(t, ·) is the true response surface, Q = c(X0:τ(t)) are random scenario-
based costs, and ε are mean-zero residuals with variance σ2 arising from Monte
Carlo simulations. Empirically, (21) translates into regressing {qn} on {xn0},
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n = 1, . . . , N ; this step is discussed in section 5.2. After determining q̂, and
using (10) the estimated detection rule Ŝt is

Ŝt := {x : q̂(t,x)− d(x) > 0} . (22)

The above provides a recipe to obtain an (approximate) Ŝt using the collec-

tion of detection rules Ŝ1:t−1. Iterating over t, yields the sequence of detection
maps Ŝt for t = 1, 2, . . .. We recall that as t → ∞, we expect Ŝt to stabilize
and tend to a time-invariant detection map. Such convergence is illustrated in
Figure 11, where we trace the boundaries ∂Ŝt for t = 1, . . . , 20. Convergence
takes hold after about 15 iterations and suggests that Ŝ20 ' S; this is what we
used for Figures 6-10 where the boundary of Ŝ20 was taken as the final output
of the Algorithm.

The detection rule (19) is time-dependent since it utilizes a new Ŝt−s at each
stage s. Model predictive control simplifies this feature with a time-invariant
rule that simply utilizes Ŝt−1 (that we relabel as Ŝ(t−1) for typographical dis-

tinction). Indeed, as Figure 11 shows, the early maps Ŝ1, Ŝ2, . . ., are not as

accurate as Ŝt−1 for t large, so it makes sense to completely “forget” them
and rely just on the last iteration step. Accordingly, we implement a blend
of (7) and (8) by first using (19) over t = 1, 2, . . . , t∗ and then switching to a
receding-horizon rule

τMPC
t := min{s ≥ 1 : Xs ∈ St−1}, t = t∗, t∗ + 1, . . . . (23)

The above MPC iterations are terminated once q̂(t,x) and q̂(t + 1,x) do not
change much, namely ‖q̂(t, ·)− q̂(t+1, ·)‖L∞ < Tol for a specified tolerance level
Tol.

5.2. Regression Model

Because we have limited a priori knowledge about the structure of the detec-
tion rule, it is preferable to work with a nonparametric regression architecture
for q(t,x). (For example a linear regression model for q would imply that S
in (22) is defined through linear constraints, i.e. forms a simplex in X .) In ad-
dition, nonparametric regression is typically more robust for dealing with the
non-Gaussian residuals ε that arise in our model.

There are numerous nonparametric regression frameworks that can be used,
including splines, Gaussian processes, or generalized additive models; see e.g. the
classic monograph [45]. Note that even though x 7→ V (x) is continuous, some
discontinuous response surfaces might also be helpful, such as random forests
or dynamic trees [9]. In the present article we take up a variant of local lin-
ear regression, known as Loess. Loess fits weighted linear regression models
to localized subsets of data, determined using a kernel function, specifically a
k-nearest-neighbor algorithm [46]. Compared to classical linear models, Loess
better handles outliers and heteroscedasticity, and also does not make assump-
tions about the global shape of the response surface.
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Figure 11: Convergence of the detection boundaries ∂Ŝt over t = 1 to t = 20 for the 2-D LP
detection rule from Section 4.

The Loess response model is of the form

q̂(t,x) =

r∑
i=1

β̂i(x)Bi(x) (24)

where Bi(·) is the set of r pre-specified basis functions and β̂i are estimated

regression coefficients at x. Given input matrix ~X and matching response vector
Q, β̂ is fitted using local least-squares minimization

β̂(x) := arg min
~β∈Rr

Kλ(x, ~X)(Q−B( ~X)T ~β)2, (25)

where Kλ(x, ~X) is the weighting kernel. The idea behind the kernel is to base
the predicted q̂(t,x) on the samples in the neighborhood of x, weighted by their
distance from x [45, Sec. 2.8.2]. The size of the neighborhood is controlled by
the smoothing parameter λ. If λ < 1, only a proportion λ of the samples will
be used in fitting. The smaller λ, the more “wiggly” the fit q̂(t, ·) is going to

be since fewer samples are used in computing β̂(x). Loess can be viewed as a
special kernel regression method, with the prediction being a weighted average
of the responses qn: q̂(t,x) =

∑
n ln(x)qn for the equivalent kernel l(·). In

our numerical examples, we use the implementation of Loess provided in the
R by the built-in package stats [47], which uses a tri-cubic kernel and linear,
first-order basis functions; the smoothing parameter was λ = 0.4.

5.3. Experimental Design

The aim of the response surface is to maximize the accuracy of Ŝt. This
is equivalent to maximizing model fidelity along the boundary of the detection
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map. Statistically, for a localized response surface, accuracy is primarily driven
by the local density of the input data that is specified by the experimental
design Z. Hence, to maximize our confidence regarding the boundary of St in
(22), we generate appropriate, adaptively chosen experimental designs Z. This
is achieved using the Sequential RMC framework introduced by [9]. SRMC uses
tools from active learning/Bayesian optimization to gradually grow the design

Z so as to zoom-in to the boundary of Ŝt. This is done by first quantifying the
accuracy of the existing response surface, and then adding new design sites so
as to maximize information gain. See [9, 48] for details. The SRMC approach is
illustrated in Figure 6 where the adaptively generated experimental design Z (of
size 2000 in the figure) is highly concentrated around the detection boundary
∂S. This targeted sampling of outbreak scenarios allows for more efficient
estimation, in particular lowering the local standard errors v̂(x) along ∂Ŝt,
cf. the right panel of Figure 6.

In (22) the boundary of Ŝt corresponds to the regions of X where the cost
difference between immediate detection and waiting is zero. Hence, we aim to
have more design points in regions where {q̂(t,x)− d(x) ' 0}. To this end, we
define the “posterior” measure of response surface accuracy via

p(x) := Φ

(
−|q̂(t,x)− d(x)|√

v̂(x)

)
, (26)

where Φ is the standard normal cdf and the predictive variance v̂ measures the
standard error of the surrogate prediction,

v̂(x) = σ̂2(x)‖l(x)‖2, (27)

with σ̂2(x) the estimated variance of ε around x in (21), see [45, Sec 6.1.2].
The motivation for (26) is that p(x) mimics the Bayesian posterior probabil-

ity of estimating the wrong sign (conditional on the samples in Z) of q(t,x)−
d(x), assuming that the posterior distribution is Gaussian with the empirical
mean q̂(t,x) and variance v̂(x).

The defined metric p(·) serves as a guide to augment new design locations.
Namely, it defines an acquisition function w(x) for greedily growing Z, similar to
active learning methods [49]. The acquisition function is highest in the regions

where p(x) is close to 0.5 which correspond to ∂Ŝt. Our main choice is

wmin(x) = min [p(x), 1− p(x)] . (28)

Alternatives include the Gini weights wgini(x) = p(x) (1− p(x)) and Entropic
weights wEnt(x) = −p(x) log p(x)− (1− p(x)) log(1− p(x)).

To speed up the response surface modeling, which requires refitting of q̂(t, ·)
multiple times, we used batch steps, incrementally working with designs Z(N)

of size N = N0, N0 + N ′, . . . , Nend. At each sequential design iteration, an

additional N ′ design points {xn0}N+N ′

n=N+1 are added to existing Z(N). Those
are sampled multinomially in proportion to the acquisition function w(·) from
a candidate set Xfinite. Both the initial design Z(N0) and the candidate sets
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Xfinite are generated using Latin hypercube sampling (LHS) of size D from
X . The overall procedure, summarized in Algorithm A.2, finally refits at each
iteration the Loess model for q̂ (and hence St), grows the experimental design

Z(N+N ′) = Z(N) ∪ {xn0}N+N ′

n=N+1 and recomputes the acquisition function (28).
As the design size gets larger, we expect that the implied empirical estimate

∂Ŝ
(N)
t gets closer to the true ∂St.

Remark 3. One can apply standard, non-sequential RMC by skipping the inner
while loop (steps 7-15) in Algorithm A.2. This reduces to building a response
model on a pre-specified (possibly randomized) design Z := {xn0}

N0
n=1, keeping all

other steps as is.

For the detection map in Figure 6 in Section 4 we used an initial design of
N0 = 200, which was grown over 10 iterations with N ′ = 200 to a final design of
Nend = 2000. The acquisition function was wmin and the candidate sets Xfinite

of size D = 2500 were generated with LHS. Since detection happens while I(1)

is still relatively small, we restricted the response surface regression domain to
I(1) ∈ {0, 1, . . . , 400}, S(1) ∈ {1000, . . . , 2000}. Lastly we note that the method
is still computationally intensive, with the bulk of the effort spent on generating
T ·Nend scenarios of X; running times (on a 8-core 2.27GHz machine with 12GB
of RAM) were about 20 minutes.

6. Discussion

We have presented a framework for optimal detection of epidemics in a
coupled meta-population model. Our approach explicitly takes into account
cost-benefit considerations regarding announcement of an epidemic, as well as
spatial dependence across susceptible pools. Given the information about two
populations and characteristics of the infection, our algorithm produces the
full detection map which can then be used repeatedly. We demonstrate that
information about the epidemic in one pool can be used to lower the detection
costs in another pool, realizing savings compared to traditional threshold-type
detection methods.

Since our dynamic optimization approach is entirely simulation-based it is
unusually flexible. Indeed, the precise underlying epidemic model of X is not
crucial, since Algorithm A.2 only requires the ability to generate its trajectories.
In fact, the computational complexity of our algorithms is tied not to the dy-
namics of X but to its dimensionality. In Section 4, we had dim(X) = 3; based
on our experience with RMC in [30, 9], the present approach can straightfor-
wardly handle up to 6-8 dimensions. In high dimensions, extra care must be
applied for generating the experimental designs Z since the concept of neigh-
borhoods underlying nonparametric local regression breaks down. For example,
Loess regression performs poorly if the dimension of the data is higher than 4-5.

The presented SIR framework gives a basic mechanistic description of dis-
ease progression that is obviously not very realistic. More sophisticated versions
might allow for further compartments (such as Exposed or Diseased individuals),
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age stratification, and heterogeneity among the meta-populations. One could
also include further transitions beyond (13), such as immigration ∅ → I(k), im-
munity lapses R(k) → S(k), or vaccination S(k) → R(k). Introducing immigra-
tion would allow for endogenous epidemic in Pool 2, removing the assumption
that outbreaks always start in Pool 1 and then spread to Pool 2. The con-
stant transition rates used can be replaced with seasonal patterns, stochastic
fluctuations [50], or hierarchical Markov structures [2].

Alternatively, one can also imagine more sophisticated models for the out-
break pseudo-posterior Pt – recall that the proposed one was largely for conve-
nience than any realism. For example, the Gaussian noise δt in the dynamics
of Pt that was used in the case study may be better modeled via a Beta dis-
tribution (which arises naturally as conjugate to the Poisson increments of the
fully-observed stochastic SIR model [2]). Overall, the key requirement is the
Markov structure which makes it possible to use regression against X to de-
scribe the detection rule. The Markovianity requirement can be partly relaxed
if one is willing to accept approximately-optimal solutions. Indeed, one can al-
ways project the optimal detection rule into the smaller space of rules that only
depend on some subset X′; in other words restricting the detection map to only
take into account some of the state-space dimensions. This idea was already
discussed in Section 4 where we described the sub-optimal LP strategy.

Second, one may modify the cost structures (2)-(3) to better capture the
desired detection goals. The presented costs were motivated by their classi-
cal analogues in sequential change-point detection, but might not be the most
appropriate for public health contexts. For example, there is some leeway in
what constitutes an outbreak. In (3), the threshold was zero, i.e. even a single
infected individual in Pool 2 was reportable. One can use thresholds Ī other

than zero, so that an outbreak is reportable only when I
(2)
t > Ī, otherwise an

announcement is treated as premature. Similarly, the waiting cost in (3) was

constant; it may be more realistic to make it proportional to I
(2)
t , which would

correspond to fixed costs per infected.
For such more general formulations, the costs d(X) and c(X) would no longer

be functions of Pt, and one would need to work with the full posterior distribu-

tion πt of I
(2)
t |Gt. The RMC framework could still be usable, namely we may

use particle filtering [51] to obtain πt along a simulated trajectory of the under-
lying epidemic model. Certainly, particle filtering can become computationally
expensive, making efficient inference essential. We refer to [3, 2] for some re-
cent implementation strategies in this direction that specifically target epidemic
models. The integrated sequential inference + optimization model would then
allow to treat a partially observed version of a K-pool SIR model of (13), and
ultimately a larger-scale setup such as influenza surveillance across all 50 states,
cf. Figure 1.
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Appendix A. Algorithms

Algorithm A.1 Path and Cost Generation

Require: {xn0}Nn=1, S0:t−1

1: for n = 1, . . . , N do
2: s← 1
3: while s ≤ t do
4: Simulate the next state xns ∼ p1(·|xns−1)
5: if xns ∈ St−s then Break
6: end if
7: s← s+ 1
8: end while
9: τnt ← s

10: Compute qn ≡ c(xn0:τnt
) using formula (3)

11: end for
12: return {(xn0 , qn)}Nn=1

Algorithm A.2 Sequential Regression Monte Carlo

Require: CFA, CDelay, N0, N ′, Nend, D

1: Ŝ0 ← X
2: for t = 1, 2, . . . do
3: Generate experimental design {xn0 , n = 1, . . . , N0}
4: Compute scenario costs qn = c(Xn0:τnt

) for n = 1, . . . , N0 using Algo-

rithm A.1 and Ŝ0:t−1

5: Z ← {(xn0 , qn)}N0

n=1

6: Regress {qn} on {xn0}, n = 1, . . . , N0 using Loess (24)
7: Initialize N ← N0

8: while N < Nend do
9: Generate Xfinite of size D using Latin Hypercube Sampling on X

10: Compute the acquisition weights w(x) ∀x ∈ Xfinite via (28) and (26)

11: Sample {xn0}N+N ′

n=N+1 from Xfinite using weights w(x)
12: Simulate the costs qn, n = N + 1, . . . , N +N ′ using Algorithm A.1

13: Z ← Z ∪ {(xn0 , qn)}N+N ′

n=N+1

14: Update the Loess regression model (24) using the latest Z
15: N ← N +N ′

16: end while
17: Ŝt ← {x ∈ X : q̂(t,x)− d(x) > 0}, cf. (22)
18: end for
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