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1 Introduction

As the energy markets continue to evolve, valuation of energy-linked assets
has been one of the focal topics of recent finance research. One of the most
popular choices for describing asset movements is a class of the so-called
”convenience yield models”. Such models introduce a new unobserved quan-
tity related to physical ownership of the asset. In turn, convenience yield
models can be broadly split into ”spot” models and ”term structure fac-
tor” models. To the first group belong the classical Gibson and Schwartz
model [8], as well as later models of Schwartz [19], Hilliard and Reis [12], and
Casassus and Collin-Dufresne [7]. The ”term structure” models, which have
been discussed among others by Miltersen and Schwartz [17], and Bjork
and Landen [2] are similar to Heath-Jarrow-Morton constructions in fixed
income.

In this paper we review the literature of spot convenience yield models
and analyze two new extensions. First, we discuss a variant of the Gibson-
Schwartz model with time-dependent parameters. This was first suggested
by Miltersen [16], but we provide the first full implementation of the model
using empirical data. Second, we describe a new three-factor affine model
with stochastic convenience yield and stochastic market price of risk. The
existence of a third factor allows us to achieve a good fit to the cross-section
of futures prices. The idea of time-dependent risk premia has been recently
proposed by Casassus and Collin-Dufresne [7], however, they only consider
the deterministic case. We believe that a stochastic version is much more
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natural from a theoretical standpoint, especially with a filtering applica-
tion in view. However, our results indicate that the standard assumption
of Ornstein-Uhlenbeck process for convenience yield may be mis-specified.
Overall, we fail to find a fully satisfactory model that is both consistent with
the spot and the forward curve. In our opinion, this supports the view that
the term-structure paradigm is more appropriate for energy commodities.

Because a commodity can be consumed its price is a combination of fu-
ture asset and current consumption values. However, unlike financial deriva-
tives, storage of energy products is costly and sometimes practically impos-
sible like in the case of electricity. Consequently, physical ownership of the
commodity carries an associated flow of services. On the one hand, the
agent has the option of flexibility with regards to consumption (no risk of
commodity shortage). On the other hand, the decision to postpone con-
sumption implies storage expenses. The net flow of these services per unit
time is termed the convenience yield δ. From now on we assume that δ is
quoted on a continuously compounded basis. Intuitively, the convenience
yield corresponds to dividend yield for stocks.

δ = Benefit of direct access− Cost of carry.

Commodity pricing models are obtained via various assumptions on the
behavior of δt. The implicit assumption is that St the spot price process
of the commodity in fact exists. This is not true for some commodities,
such as electricity. Even for mature markets like crude oil where spot prices
are quoted daily, the exact meaning of the spot is difficult to pin down.
Nevertheless, we will maintain the industry-standard assumption of traded
spot asset.

By a basic no-arbitrage argument it follows that the price of a forward
contract F (t, T ) which has payoff ST at future time T must equal

F (t, T ) = StEQ

[
e
∫ T

t (rs−δs)ds
]
. (1)

Indeed, we can replicate the payoff by either entering into the forward con-
tract, or by borrowing St today and holding the commodity itself from now
until T . As usual, Q is an equivalent martingale measure used for risk neu-
tral pricing. Reformulating, (1) implies that the risk-neutral drift of the
spot commodity must equal (rt − δt)St. From a modelling point of view, it
remains to specify the stochastic processes for St, rt and δt. However, the
difficulty lies in the fact that the convenience yield is unobserved. Notice

2



that δt is defined indirectly as a ”correction” to the drift of the spot pro-
cess. Thus, for any model we specify we must address the issue of estimating
or filtering the convenience yield process δt given model observables.

In this paper we will present several stochastic convenience yield models
and discuss the resulting filters. We implement the filtering problems and
compare the features of the resulting estimations using crude oil data. Sec-
tion 2 reviews the original Gibson-Schwartz model and its limitations. In
Section 3 we investigate the deterministic shift extension and its relation to
work done in fixed income. Our empirical study of this model is the first of
its kind. Section 4 is the main thrust of the paper. We analyze the extended
model with stochastic risk premia which is a new method of consistently
estimating convenience yield given the entire forward curve. The filtering
results from this model are summarized and compared in Section 5. Finally,
Section 6 concludes.

2 The Gibson-Schwartz Model

The basic spot model for convenience yield was introduced by Gibson and
Schwartz in 1990 [8]. This is a 2-factor model with a stochastic mean-
reverting convenience yield δt driving the geometric Brownian motion com-
modity spot price St.

Let (Ω,F , {Ft},P) be a filtered probability space. As our state processes
we consider the spot commodity asset St and the spot instantaneous conve-
nience yield δt. According to Gibson and Schwartz, under the risk-neutral
measure Q,

dSt = (rt − δt)St dt + σSt dW 1
t , (2a)

dδt = κ(θ − δt)dt + γ dW 2
t , (2b)

with W 1,W 2 1-dimensional Wiener processes satisfying d〈W 1,W 2〉t = ρ dt.
Note that unlike interest rates, depending on market conditions convenience
yields can be either positive or negative, and so the choice of Ornstein-
Uhlenbeck process for δt in (2b) makes sense. From now on we shall also
assume that

Assumption 1 The interest rate rt is deterministic.

In practice, one observes that the volatility of the convenience yield is an
order of magnitude higher than the volatility of interest rates. Consequently,
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letting rt be stochastic as in Schwartz [19] does not give much qualitative
improvement to the model.

The implications of (A1) are crucial. Non-stochastic interest rates imply
that futures and forward prices are the same, and both equal the risk-neutral
expectation of the future spot price.

If ρ > 0 then the stochastic convenience yield induces weak mean-
reversion in the spot price. Observe that when St is increasing due to in-
crement dW 1, thanks to positive correlation ρ, δt is also likely to increase.
In turn, this reduces the drift of the spot. Note that this is a second-order
effect. Empirically, mean-reversion of the spot has been widely documented
[8], with values of ρ ∼ 0.3 − 0.7. The theory of storage developed back in
the 1950s [5] shows that the endogeneous economic link is through inventory
levels: when inventories are low, shortages are likely, causing high prices, as
well as valuable optionality of holding the physical asset.

Let Xt = log St. Then the model (2) is linear in the state vector Zt =
[Xt, δt]. In fact, it is exponential affine and hence admits analytical futures
and options prices. As shown by Bjork and Landen [2],

F (t, T ) = F (t, T ; Zt) = Ste
∫ T

t rsdseB(t,T )δt+A(t,T ) where (3)

B(t, T ) =
e−κT − 1

κ
, (4)

A(t, T ) =
κθ + ρσsγ

κ2
(1− e−κ(T−t) − κ(T − t))+ (5)

+
γ2

κ3
(2κ(T − t)− 3 + 4e−κ(T−t) − e−2κ(T−t)).

Hence, under Q the forward contract follows

dF (t, T ) = F (t, T )
[
rtdt + σ dW 1

t + γ
e−κT − 1

κ
dW 2

t

]
. (6)

Also, recall that the convenience yield follows an Ornstein-Uhlenbeck (OU)
process. Conditional on Fs, δt is Gaussian with

δt|Fs ∼ N
(
(1− e−κ(t−s))δs + e−κ(t−s)θ,

γ2

2κ
(1− e−2κ(t−s))

)
.

2.1 Model Estimation

Because the model is conditionally Gaussian (i.e. linear), we can estimate all
the parameters empirically using the standard Kalman filter method. The
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filtering of the Gibson-Schwartz model (2) is very easy since everything
is 1-dimensional. Of course, historical estimation requires us to make an
assumption on the market prices of risk λ for St, and λε for the unobserved
convenience yield (each random source must have its own market price of
risk). The simplest choice is

Assumption 2 λ and λε are constant.

Denote by (W̃ 1, W̃ 2) the Brownian motions (W 1,W 2) under P. Then
the historical dynamics of δt are

dδt = [κ(θ − δt)− λε]dt + γ dW̃ 2
t (7)

and we just need to adjust θ̂ = θ − λε/κ. Consequently, our measurement
and transition equations are

Xn = Xn−1 +
(
rn − δn − σ2

S

2
+ λ

)
∆t + ξn, ξn ∼ N (0, σ2

S∆t), (8a)

δn = e−κ∆tδn−1 + (1− e−κ∆t)θ̂ + ηn, ηn ∼ N (
0, γ2

2κ
(1− e−2κ∆t)

)
. (8b)

Figure 1 shows the result of such Kalman filtering on crude oil data (see
Section 5.1 for description of our data set). We estimate the model parame-
ters (κ, θ, γ, ρ, λ) using the prediction error decomposition of the likelihood
function coming from the filter [11]. As is usual in such models, the esti-
mates of κ and λ are very imprecise. Overall, we find that κ ∈ [0.1, 0.4], γ ∈
[0.4, 0.5], θ ∈ [−0.3,−0.1], ρ ∈ [0.5, 0.7], λ ∈ [−0.1, 0.1]. The spot volatility
σS is recovered by computing the historical volatility of the time series,
which is about 45% for our data set. For interest rates we use the current
3-month LIBOR rate.
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Figure 1: Filtered convenience yield for crude oil, 1994-2002. κ = 0.2, γ =
0.5, θ = −0.15, ρ = 0.7, λ = 0.

Unfortunately, a more careful analysis shows that the basic model (2) is
not consistent with the forward curve. In commodity markets the forward
(sic) curve denotes the term structure of futures contracts. Using (3) and the
estimated parameters we can calculate the implied convenience yield from
the observed futures prices. Comparing the results in Figure 2 with those
in Figure 1, it is clear that the predictive power of the Gibson-Schwartz
model is very limited in practice. Furthermore, each futures contract seems
to carry its own source of risk as evidenced by the sharp spikes in Figure 2
which result due to sudden uncorrelated movements in the futures and the
spot. As Figure 3 shows, there is a further inconsistency between the implied
δt’s from futures contracts of different maturities. In the next sections we
will attempt to resolve this problem in two ways – either by considering
time-dependent parameters or by taking into account the forward curve
and enlarging the state space.
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Figure 2 : Implied convenience yield using a
3-month futures and same parameters as in

Figure 1.
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Figure 3 : Difference in implied convenience
yields between 3- and 12-month futures.

3 Miltersen Extension

Miltersen [16] proposed to extend (2) by allowing some of the parameters
to be a funtion of time. This is a direct analogue of the extension of the
Vasicek model for interest rates done by Hull and White [13].

The simplest choice is to make the mean-reversion level θ time-dependent,
θ = ϑ(t). This allows to fit the initial futures prices directly, in the same
way that the Hull-White model can fit the initial term structure of bond
prices [6]. The calibration is performed by letting the spot yield be ”dragged
around” its changing mean ϑ(t).

Integrating the equation for δt in (2) we obtain

δt = δse
−κ(t−s) +

∫ t

s

e−κ(t−u)ϑ(u)du + γ

∫ t

s

e−κ(t−u)dW 2
u . (9)

If we define

αt :=

∫ t

.

e−κ(t−u)ϑ(u)du, (10)

it follows that we have the deterministic shift decomposition δt = at + αt,
where at follows the mean-zero OU process

dat = −κat dt + γ dW 2
t .

To complete the calibration we must take ϑ(t) to match a chosen set of ob-
served futures prices F (0, Ti), i = 1, 2, . . . , n. For this purpose define ε(0, t)
via

F (0, Ti) = S0e
∫ Ti
0 (rs−ε(0,s))ds. (11)
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In HJM-type models [17], ε(0, t) is called the initial term structure of futures
convenience yields. Then it can be shown that

ϑ(t) = εT (0,t)
κ

+ ε(0, t) + γ2

2κ2 (1− e−2κt)− ρσSγ
κ

(12)

or alternatively αt = εT (0, t) + γ2

κ2 (1− e−κt)2.
Solving for ε(0, t) in (11) we obtain

ε(0, t) = rt − ∂ log(F (0, t))

∂t
. (13)

Of course our data consists of just {F (0, Ti)} so we must interpolate those
smoothly and then take partial derivatives to infer the implied ε(0, t)’s. We
recommend fitting the forward curve with B-splines using 5-8 degrees of
freedom. B-splines provide accurate fit to market data and also generate
smooth first and second derivatives w.r.t. T (note that for (12) we also need
∂ε(t,T )

∂T
). Figures 4 and 6 provide examples of such B-spline fitting with six

degrees of freedom. As our input we use various 28-month crude oil forward
curves from the last few years. The parameter values are the same as in
Figure 1.
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interpolated term structure of convenience
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Figure 7 : Term structure of mean reversion
level ϑt, 1/18/2002.

From a more general calibration point of view, we now fit exactly a set
of benchmark futures prices and instead concentrate on modelling the term
structure of volatility. The empirical work in this direction is complicated by
the need to estimate volatility and the numerical difficulty of estimating the
rest of the parameters given time-dependent models. Also, it is rather un-
natural to fit the initial term-structure, while remaining in a spot paradigm
since this leaves the model exposed to inconsistencies in time (i.e. the need
to constant re-calibration).

4 Enlarging the Observation Equation

The inconsistency alluded to in the end of Section 2 is serious. We have
an explicit formula (3) for the value of the futures price as a function of
the spot and the convenience yield, and this formula is invertible. Hence,
in principle we have an exact estimate of δt. Unfortunately, there are many
futures traded, and if we compare the implied δt from a 3-month futures it
would not agree with the implied δt from a 6-month contract (cf. Figure 3).
One solution is to assign to each contract its own source of idiosyncratic risk
due to temporary mispricing, bid-ask spread and liquidity concerns. Such
an assumption is made by Schwartz [19]. Considering (3), we see that fixing
St, the entire forward curve is just 1-dimensional, which is certainly not
what one observes in practice. A more elaborate idea is to assume a whole
term structure of convenience yields, one for each maturity. This leads to
HJM-type constructions [17].

The fundamental solution for model consistency is to have the futures
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(or any other vanilla derivatives that are liquidly traded) as part of our
observation. After including the futures F i

s = F (s, Ti), i = 1, 2, . . . n, the
observable filtration is now FO

t = σ{Ss, F
i
s : 0 ≤ s ≤ t}.

By enlarging the set of observable instruments we are also able to address
other limitations of the model. Recall that the behavior of the market price
of risk λ for the spot was so far ”swept under the rug”. By (A2) λ is constant.
Ignoring for a second the validity of such assumption, we are still faced with
the problem of estimating its value. While the market price of risk can be in
principle inferred from prices of traded assets, this method is cumbersome
and imprecise. An alternative suggestion elaborated by Runggaldier et al.
in a series of papers [1, 9, 10, 18] is to make λt also a stochastic process.
Because a filter is robust to model specification, this approach is valid even
if λt is deterministic or just constant.

Runggaldier [18] suggests using another OU process for λt since mean
reversion and the resulting stationarity is a desirable feature:

dλt = κλ(λ̄− λt)dt + σλdW 3
t . (14)

It is reasonable to assume that the market price of risk carries its own
Brownian motion and that W 3 is correlated with W 1, but not with W 2

the noise of the convenience yield. Intuitively, the market risk premia are
independent from storage costs of the commodity. We also expect that there
is negative correlation between the spot and the market price of risk ρSλ < 0.
This is to strengthen the empirical mean-reversion in the spot [7].

Working in an incomplete market we pick the minimal martingale mea-
sure Q so that the Girsanov transformation corresponding to λt affects only
W 1 (W̃ 1 under P):

dW 1
t = dW̃ 1

t − λtdt.

Our extended state is now Zt = [Xt, δt, λt] which is again Markovian,
and in fact conditionally Gaussian. Thus we preserve the exponential affine
model which allows for easy pricing of futures and options.

Following the standard martingale method for pricing derivatives, we
assume that the price of a futures contract is a function of the state vector

F i
t = F i(t, Zt) = EQ[STi

| Ft] . (15)

Then applying Itô’s formula and using the fact that discounted traded asset
prices are Q-martingales we must have

dF i
t = rtF

i
t dt + σSSt

∂F i
t

∂S
dW 1

t + γ
∂F i

t

∂δ
dW 2

t + σλ
∂F i

t

∂λ
dW 3

t . (16)
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In our case we already have the explicit expression (3) which held for the
Gibson-Schwartz model. This was derived by a replication argument. Since
λ only affects the distribution under P, the replication argument still goes

through in the extended model. In other words,
∂F i

t

∂λ
= 0 and (16) simplifies

to

dFt

Ft

= rtdt+

(
σS + ργ

e−κT − 1

κ

)
λt dt+σSdW̃ 1

t +γ
e−κT − 1

κ
dW̃ 2

t +α dW F
t .

(17)
The last term α dW F

t is the idiosyncratic risk associated with Ft and used
to smooth out the data. We expect α to be an order smaller than the other
volatilities in (17). Summarizing, the complete filtering model under the
real world probability P is given by

dλt = κλ(λ̄− λt) dt + σλdW 3
t (18a)

dδt = κ(θ̂ − δt)dt + γ dW̃ 2
t (18b)

dSt = (rt − δt + σSλt)St dt + σSSt dW̃ 1
t (18c)

dF i
t =

(
rt + σSλt + ργ e−κTi−1

κ
λt

)
F i

t dt + σSF i
t dW̃ 1

t + γF i
t

e−κTi−1
κ

dW̃ 2
t + α dW F i

t .

(18d)

According to the setup, δt and λt are not observable, St is fully observed
and F i

t is imperfectly observed in the market.
Notice that after taking logarithms of observed prices, the entire system

is still linear and hence amenable to Kalman filtering. We note that this
linearity is more an artifact of the model rather than its goal. Our choice of
OU processes for λ and δ has been motivated by heuristic arguments, not
by modelling convenience.

Figure 8 shows the result of applying (18) to crude oil data. Once again
we estimate the parameters (κ, θ̂, γ, ρ, κλ, λ̄, σλ, ρλ) using the prediction er-
ror decomposition from the filter. We find that the filter is relatively insen-
sitive to the parameters of the λ process. The range of λ appears to be much
smaller (on the order of 0.05) and that the correlation between λ and the
spot is essentially zero. The presence of λ also reduces the estimated corre-
lation between spot and δt to around 0.5. The empirical correlation between
λt and δt is 0.258. The idiosyncratic futures noise α corresponds to a small
error of about 0.05. Empirically, this is sufficient to remove the undesirable
spikes of Figure 2. However, the empirical results are unsatisfactory. Even
with the noise term α dW F

t , the filtered convenience yield exhibits severe
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spikes which contradict the initial assumption of δt following an OU process.
Furthermore, in Figure 8, δt does not exhibit any sort of persistence, con-
trary to economic intuition. In short, while the theoretical model is superior,
the empirical results fall short of the simpler Gibson-Schwartz case.

κ = 0.2 κλ = 0.4
γ = 0.5 σλ = 0.35

θ̂ = −0.1 λ̄ = 0.02
ρ = 0.5 ρλ = −0.1

Table 1: Estimated parameter values for Model (18).
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Figure 8: Filtered convenience yield for crude oil using the spot and 3-month
futures. Parameter values are given in Table 1.

5 Empirical Implementation

5.1 Description of Oil Data

For our data set we choose the West Texas Intermediate oil contracts during
the period Jan 1994 - July 2002. Crude oil is one of the most mature energy
markets with a well-developed forward curve spanning several years.
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The WTI futures contract trades on NYMEX since 1993. Monthly fu-
tures contracts are traded with maturities of 1, 2, 3, ...23, 24, 30, 36, 48, and
60 months. The longer maturities usually trade as a set of strips (for ex-
ample a January-June strip of 6 months) and consequently exhibit a high
correlation. A single futures contract is for 1,000bbl to be delivered anytime
during the delivery month at Cushing, Oklahoma. Trading terminates on
the third business day prior to the 25th calendar day of the month preceding
the delivery month. The spot price is defined as the Balance-of-the-Month
(BOM) contract and has varying liquidity.
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Figure 9: Time series for crude oil spot and 6-month futures, 1994-2002.

As opposed to many other energy assets, crude oil exhibits little season-
ality and the prices tend to be somewhat stable. Consequently the value of
having the physical commodity at hand is small and the net convenience
yield is dominated by storage costs. As a result, the forward curve is usually
in backwardation, i.e. T → F (t, T ) is a decreasing function. Occasionally we
have a flip and the forward curve appears as a contango. Litzenberger and
Rabinowitz [14] report that 80%-90% of the time the oil forward curve is
in backwardation. Historically, periods of contango when futures prices are
above the spot price are highly correlated with periods of low prices.

Oil futures also exhibit the well-known Samuelson effect. When the con-
tracts are first started and are far away from maturity (2+ years), they are
thinly traded and exhibit low volatility. As the maturity nears both trad-
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ing volume and volatility increase. As a rule of thumb, the nearest month
contract is both the most liquid and the most volatile. The spot contract
is rather distinct, since it is used for different purposes. Specifically, spot
contracts are usually used for balancing day-to-day needs and consequently
exhibit high volatility and medium volume. Thus, the term structure of oil
futures volatility T → σ(t, T ) is usually decreasing.

5.2 Results

First, we compare the consistency of the three-factor model (18) with respect
to the forward curve. We find that our estimate of convenience yield is stable
when using futures contracts with different maturities as inputs. Figure 10
shows the estimated δt using three different sets of two futures contracts as
inputs. All three estimates are quite close to each other. Thus our model
succeeds in removing the inconsistency of Figure 3.
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Figure 10: Estimates of δt using three different pairs of futures contracts.

Secondly, we test the notion that the convenience yield is the flow of
services accruing to the holder of the physical asset but not to the holder of
a futures contract. This interpretation implies that when the convenience
yield is positive δt > 0, the forward curve should be in backwardation, and
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conversely when the convenience yield is negative we should be in contango.
Thus, if our model fits well, the estimated δt can be used as an indicator
to predict the switches from contango and backwardation. Such market
transitions are very important for actual trading. In this vein we compare
the performance of our δt-indicator versus two other indicators proposed
recently by Borovkova [4, 3].

Borovkova proposes to use the moving-average inter-month spread indi-
cator:

I1(t) =
1

M

M∑

k=0

n∑
i=1

γi(Fi+1(t− k∆t)− Fi(t− k∆t)) (19)

and the PCA indicator:

I2(t) =
1

M

M∑

k=0

∑
i

wiF̄i(t− k∆t). (20)

Above γ is the discount factor used in weighing different inter-month spreads.
The implicit assumption is that the closer contracts are more important
and so the weights can be written as wk = γk. Similarly, wi are the factor
loads corresponding to the first factor from PCA performed on a de-meaned
forward curve. This factor generally corresponds to ”slope”. In [4] I2(t) is
anticipative because the PCA is performed on the entire data sample.

Figure 11 compares the performance of these two indicators, as well as
the negative filtered convenience yield −δt, on the oil data from 1994-2002.
The areas of contango/backwardation were identified a priori by looking
directly at the forward curves. As can be seen, all three indicators perform
well. The times when the indicators are near zero generally correspond to
periods of market transition or uncertainty. Of the three the convenience
yield one usually gives the clearest signal, but also gave a false backwarda-
tion signal in early 1995.
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Figure 11: Three different indicators for forward curve state: I1 , I2(gray)
and IGS δt(dotted line) using a 3-month futures from Gibson-Schwartz
model. Parameter values are the same as in Figure 1.

We find that the forward curve indicator from the extended stochastic-λ
model is not a good predictor for market transitions. From Figures 8 and 10
we can see the estimated convenience yield is too close to zero to give a
clear signal on the state of the forward curve.

6 Conclusion

In this paper we investigated filtering of convenience yield models. We dis-
cussed the inadequacies of the classical Gibson-Schwartz model and an-
alyzed two new extensions. The time-inhomogeneous extension first pro-
posed by Miltersen seems to work well but requires further investigation
into the forward curve volatility structure to fully judge its consistency. This
is fraught with complications because of discrepancies between realized and
implied volatilities. The stochastic market price of risk extension was also
studied. This approach provides a ”clean” solution while maintaining the
exponential affine feature of the model crucial for fast implementation. Fur-
thermore, the model is consistent with the observed forward curve. However,
the filtered convenience yield displays extreme spikeness which contradicts
the assumption of a driving OU process. As well, the model is not as good
as the basic one when it comes to predicting forward curve state transitions.
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This fact is unsettling because it goes against the economic underpinnings
of the convenience yield definition.

Our work provided some clues for future research and exposed the weak-
nesses of various spot models. Overall, we believe that this study shows the
need for more sophisticated term-structure models in order to explain both
the spot and the forward curve. In turn, this requires a more careful anal-
ysis of the term structure of futures volatility. Further work also needs to
be carried on applying the models to natural gas markets where seasonality
is strong. Decoupling of seasonality and unobserved state variables remains
an open theoretical problem.
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