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Abstract

We study the numerical solution of nonlinear partially observed optimal stopping problems. The
system state is taken to be a multi-dimensional diffusion and drives the drift of the observa-
tion process, which is another multi-dimensional diffusion with correlated noise. Such models
where the controller is not fully aware of her environment are of interest in applied probability
and financial mathematics. We propose a new approximate numerical algorithm based on the
particle filtering and regression Monte Carlo methods. The algorithm maintains a continuous
state-space and yields an integrated approach to the filtering and control sub-problems. Our ap-
proach is entirely simulation-based and therefore allows for a robust implementation with respect
to model specification. We carry out the error analysis of our scheme and illustrate with several
computational examples. An extension to discretely observed stochastic volatility models is also
considered.
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1. Introduction

Let (Ω,F , (Ft),P) be a filtered probability space and consider a d-dimensional process X =

(Xt) satisfying an Îto stochastic differential equation (SDE) of the form

dXt = b(Xt) dt + α(Xt) dUt + σ(Xt) dWt, (1)

where U and W are two independent (Ft)-adapted Wiener processes of dimension dU and dW

respectively. Let Y be a dY ≡ dU-dimensional diffusion given by

dYt = h(Xt) dt + dUt. (2)

Assumptions about the coefficients of (1)-(2) will be given later. Denote by F Y
t = σ(Ys : 0 ≤ s ≤

t) the filtration generated by Y . We study the partially observed finite horizon optimal stopping
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problem

sup
τ≤T, F Y−adapted

E
[
g(τ, Xτ,Yτ)

]
, (3)

where g : [0,T ] × Rd × RdY → R is the reward functional.
The probabilistic interpretation of (3) is as follows. A controller wishes to maximize expected

reward g(t, x, y) by selecting an optimal stopping time τ. Unfortunately, she only has access to
the observation process Y; the state X is not revealed and can be only partially inferred through its
impact on the drift of Y . Thus, τ must be based on the information contained solely in Y . Recall
that even when Y is observed continuously, its drift is never known with certainty; in contrast the
instantaneous volatility of Y can be obtained from the corresponding quadratic variation.

Such partially observed problems arise frequently in financial mathematics and applied prob-
ability where the agent is not fully aware of her environment, see Section 1.1 below. One of
their interesting features is the interaction between learning and optimization. Namely, the ob-
servation process Y plays a dual role as a source of information about the system state X, and
as a reward ingredient. Consequently, the agent has to consider the trade-off between further
monitoring of Y in order to obtain a more accurate inference of X, vis-a-vis stopping early in
case the state of the world is unfavorable. This tension between exploration and maximization
is even more accentuated when time-discounting is present. Compared to the fully observed set-
ting, we therefore expect that partial information would postpone decisions due to the demand
for learning.

In the given form the problem (3) is non-standard because the payoff g(t, Xt,Yt) is not adapted
to the observed filtration (F Y

t ) and, moreover, Y is not Markovian with respect to (F Y
t ). This dif-

ficulty is resolved by a two-step inference/optimization approach. Namely, the first filtering step
transforms (3) into an equivalent fully-observed formulation using the Markov conditional dis-
tribution πt of Xt given F Y

t . In the second step, the resulting standard optimal stopping problem
with the Markovian state (πt,Yt) is solved.

Each of the two sub-problems above are covered by an extensive literature. The filtering
problem with diffusion observations was first studied by Kalman and Bucy [21] and we refer to
the excellent texts [2, 20] for the general theory of nonlinear stochastic filtering. The original
linear model of [21] had a key advantage in the availability of sufficient statistics and subse-
quent closed-form filtering formulas for πt. Other special cases where the filter was explicitly
computable were obtained by [1] and [4]. However, in the general setup of (1)-(2), the condi-
tional distribution πt of Xt is measure-valued, i.e. an infinite-dimensional object. This precludes
consideration of explicit solutions and poses severe computational challenges.

To address such nonlinear models, a variety of approximation tools have been proposed.
First, one may linearize the system (1)-(2) by applying (A) the extended Kalman filter [18, 23].
Thus, the conditional distribution of X is summarized by its conditional mean mt = E[Xt |F Y

t ]
and conditional variance Pt = E[(Xt − mt)2|F Y

t ]. One then derives (approximate) evolution
equations for (mt, Pt) given observations Y . More generally, πt can be parameterized by a given
family of probability densities, yielding the (B) projection filter. Let us especially single out the
exponential projection methods studied by Brigo et al. [4, 5]. Third, the state space of πt can
be discretized through (C) optimal quantization methods [35, 36]. This replaces (πt) by a non-
Markovian approximation (π̃t) whose transition probabilities are pre-processed via Monte Carlo
simulation. Fourth, one may apply (D) Wiener chaos expansion methods [28, 27, 32] that reduce
computation of πt to a solution of SDE’s plus ordinary differential equation systems. Finally,
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(E) interacting particle systems have been considered to approximate πt non-parametrically via
simulation tools [7, 8, 9, 12].

The optimal stopping sub-problem of the second step can again be tackled within several
frameworks. When the transition density of the state variables is known, classical (a) dynamic
programming computations are possible, see e.g. [38]. If the problem state is low-dimensional
and Markov, one may alternatively use the quasi-variational formulation to obtain a free-boundary
partial differential equation (pde) and then implement a (b) numerical pde solver for an efficient
solution. Thirdly, (c) simulation-based methods [13, 26, 40] that rely on probabilistic Snell en-
velope techniques can be applied.

The joint problem of optimal stopping with partial observations was treated in [16], [17], [29],
[36] and [33]. All these models can be viewed as a combination of the listed approaches to the
two filtering/optimization sub-problems. For example, [29] proposes to use the assumed density
filter for the filtering step, followed by a pde solver for the optimization. This can be summarized
as algorithm (B)/(b) in our notation. Meanwhile, [36] use (C)/(a), i.e. optimal quantization for
the filter and then dynamic programming to find optimal stopping times. Methodologically, two
ideas have been studied. First, using filtering techniques (A) or (B), one may replace πt by
a low-dimensional Markovian approximation π̂t. Depending on the complexity of the model,
algorithms (a) or (b) can then be applied in the second step. Unfortunately, the resulting filtering
equations are inconsistent with the true dynamics of πt, and require a lot of computations to derive
them for each considered model. The other alternative is to use the quantization technique (C)
which is robust and produces a consistent (but non-Markovian) approximation π̃t. Since the state
space of π̃t is fully discretized, the resulting optimal stopping problem can be solved exactly
using dynamic programming algorithm (a). Moreover, tight error bounds are available. The
shortcomings of this approach are the need to discretize the state space of X and the requirement
of offline pre-processing to compute the transition density of π̃t.

In this paper we propose a new approach of type (E)/(c) that uses a particle filter for the
inference step and a simulation tool in the optimization step. Our method is attractive based on
three accounts. Firstly, being entirely simulation-based it can be generically applied to a wide
variety of models, with only minor modifications. In particular, the implementation is robust
and requires only the ability to simulate (Xt,Yt). For comparison, free boundary pde solvers
of type (b) often use advanced numerical techniques for stability and accuracy purposes and
must be re-programmed for each class of models. Also, in contrast to optimal quantization,
no pre-processing is needed. Moreover, the interacting particle system approach to filtering is
also robust with respect to different observation schemes. In the original system (1)-(2) it is
assumed that Y is observed continuously. It is straightforward to switch our algorithm to discrete
regularly-spaced observations of Y that may be more natural in some contexts.

Secondly, our approach maintains a continuous state space throughout all computations. In
particular, the computed optimal stopping rule τ∗ is continuous, eliminating that source of error
and leading to a more natural decision criteria for the controller. Thus, compared to optimal
quantization, our approach is expected to produce more “smooth” optimal stopping boundaries.
Third, our method allows the user to utilize her domain knowledge during the optimization step.
In most practical applications, the user already has a guess regarding an optimal stopping rule
and the numerical computations are used as a refinement and precision tool. However, most
optimal stopping algorithms rely on a “brute force” scheme to obtain an optimal stopping rule.
By permitting custom input for the optimization step, our scheme should heuristically lead to
reduced computational efforts and increased accuracy.

Finally, maintaining the simulation paradigm throughout the solution allows us to integrate
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the filtering and Snell envelope computations. In particular, by carrying along a high-dimensional
approximation of πt, the initial filtering errors can be minimized in a flexible and anticipative
way with respect to the subsequent optimization step. Thus, the introduction of filtering errors
is delayed for as long as possible. This is important for optimal stopping where the forward-
propagated errors (such as the filtering error) strongly affect the subsequent backward recursion
solution for τ∗. To summarize, our scheme should be viewed as an even more flexible alternative
for the optimal quantization method of [36].

Remark 1. To our knowledge the idea of integrated stochastic filtering and optimization was
conceived in [34], in the context of utility maximization with partially observed state variables.
Muller et al. [34] proposed to use the Markov Chain Monte Carlo (MCMC) methods and an
auxiliary randomized pseudo-control variable to do both steps at once. These ideas were then
further analyzed in [3, 41] for a portfolio optimization problem with unobserved drift parameter
and unobserved stochastic volatility, respectively. In fact, Viens et al. [41] utilized a particle
filter but then relied on discretizing the control and observation processes to obtain a finite-
dimensional problem with discrete scenarios. While of the same flavor, this approach must be
modified for optimal stopping problems like (3), as the control variable τ is infinite-dimensional.
Indeed, stopping rules τ are in one-to-one correspondence with stopping regions, i.e. subsets of
the space-time state space. Such objects do not admit easy discretization. Moreover, the explicit
presence of time-dimension as part of our control makes MCMC simulation difficult. Thus, we
maintain the probabilistic backward recursion solution method instead.

The rest of the paper is organized as follows. In Section 2 we recall the general filtering
paradigm for our model and the Snell envelope formulation of the optimal stopping problem (3).
Section 3 describes in detail the new algorithm, including the variance-minimizing branching
particle filter in Section 3.1, and the regression Monte Carlo approach to compute the Snell
envelope in Section 3.2. We devote Section 4 to the error analysis of our scheme and to the proof
of the overall convergence of the algorithm. Section 5 then illustrates our scheme on a numerical
example; a further computational example is provided in Section 6 which discusses the extension
of our method to discretely observed stochastic volatility models. Finally, Section 7 concludes.

Before proceeding, we now give a small list of applications of the model (1)-(3).

1.1. Applications
Optimal Investment under Partial Information

The following investment timing problem arises in the theory of real options. A manager is
planning to launch a new project, whose value (Yt) evolves according to

dYt = Xt dt + σY dUt,

where the drift parameter (Xt) is unobserved and (Ut) is an R-valued Wiener process. The envi-
ronment variable Xt represents the current economic conditions; thus when the economy is boom-
ing, potential project value grows quickly, whereas it may be declining during a recession. At
launch time τ the received profit g(·) is a function of current project value Yτ, as well as extra un-
certainty that depends on the environment state. For instance, consider g(·) = Yτ ·(a0+a1Xτ+b0ε),
ε ∼ N(0, 1) independent, where the second term models the profit multiplier based on econ-
omy state. Conditioning on the realization of ε, expected profit is g(τ, Xτ,Yτ) = Yτ(a0 + a1Xτ).
Such a model with continuous-time observations was considered by [11] in the static case where
X0 ∈ {0, 1} and dXt = 0. A similar problem was studied in [31] with an additional consumption
control.
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Using the methods below, we can treat this problem for general X-dynamics of the type (1),
under both continuous and discrete observations.

Stochastic Convenience Yield Models
Compared to holding of financial futures, physical ownership of commodities entails addi-

tional benefits and costs. Accordingly, the rate of return on the commodity spot contract will be
different from the risk-free rate. The stochastic convenience yield models [6, 37] postulate that
the drift of the asset price (Yt) under the pricing measure P is itself a stochastic process,


dYt = Yt(Xt dt + σY dUt),
dXt = b(Xt) dt + α(Xt) dUt + σX(Xt) dWt.

One may now consider the pricing of American Put options on asset Y with maturity T and strike
K,

sup
τ≤T
E

[
e−rτ(K − Yτ)+

]
,

where the convenience yield X is unobserved and must be dynamically inferred. To learn about
X it is also possible to filter other observables beyond Y , e.g. futures contracts, see [6].

Reliability Models with Continuous Review
Quality control models in industrial engineering [19] can also be viewed as examples of (3).

Let Xt represent the current quality of the manufacturing process. This quality fluctuates due to
machinery state and also external disturbances, such as current workforce effort, random shocks,
etc. When quality is high, the revenue stream Y is increasing; conversely poor quality may
decrease revenues. Because revenues are also subject to random disturbances, current quality
is never observed directly. In this context, it is asked to find an optimal time τ to replace the
machinery (at cost g(Xt)) and reset the quality process X. Assuming “white noise” shocks to the
system and continuous monitoring of revenue stream this leads again to (1)-(2)-(3). The case
where Y is discretely observed and X is a finite-state Markov chain was treated by Jensen and
Hsu [19].

2. Optimization Problem

2.1. Notation
We will use the following notation throughout the paper:

• For x ∈ R, we write x = bxc + {x} to denote the largest integer smaller than x and the
fractional part of x, respectively.

• δx denotes the Dirac measure at point x.

• Ck
b denotes the space of all real-valued, bounded, continuous functions with bounded con-

tinuous derivatives up to order k on Rd. We endow Ck
b(Rd) with the following norm

‖ f ‖m,∞ =
∑

|α|≤m

sup
x∈Rd
|Dα f (x)|, f ∈ Ck

b(Rd), m ≤ k,

where α = (α1, . . . , αd) is a multi-index and derivatives are written as Dα f , ∂α1
1 · · · ∂αd

d f .
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• Wk
p = { f : Dα f ∈ Lp(Rd), |α| ≤ k} denotes the Sobolev space of functions with p-integrable

derivatives up to order k.

• P(Rd) is the space of all probability measures over the Borel σ-algebra B(Rd). For µ ∈ P,
µ( f ) ,

∫
Rd f (x)µ(dx). We endow P with the weak topology; µn → µ weakly if ∀ f ∈ C0

b,
µn( f )→ µ( f ).

2.2. Filtering Model

In this section we briefly review the theory of nonlinear filtering as applied to problem (3).
We follow [7] in our presentation.

Before we begin, we make the following technical assumption regarding the coefficients in
(1) and (2).

Assumption 1. The coefficients of (1) satisfy: b(x) ∈ C3
b(Rd), α(x) ∈ C3

b(Rd×dY ), σ(x) ∈ C3
b(Rd×dW )

and moreover, α and σ are strictly positive-definite matrices of size d×dY and d×dW respectively.
Similarly, in (2), h(x) ∈ C4

b(Rd).

This assumption in particular guarantees the existence of a unique strong solution to (1), (2).
We also assume that

Assumption 2. The payoff function g is bounded and twice jointly continuously differentiable
g ∈ C2

b([0,T ] × Rd × RdY ).

The latter condition is often violated in practice where payoffs can be unbounded. However,
one may always truncate g at some high level Ḡ without violating the applicability of the model.

We begin by considering the conditional distribution of X given F Y
t . Namely, for f ∈ C2

b(Rd)
define

πt f , E[ f (Xt)|F Y
t ]. (4)

It is well-known [2] that πt f is a Markov, F Y -adapted process that solves the Kushner-Stratonovich
equation

d(πt f ) = πt(A f ) dt +

dY∑

k=1

[
πt(hk · f ) − πt(hk) · πt( f ) + πt(Bk f )

]
[dYk

t − πt(hk) dt], (5)

where the action of the differential operators A and Bk on a test function f ∈ C2
b(Rd) is defined

by


A f (x) , 1
2

d∑

i, j


dU∑

k=1

αik(x)α jk(x) +

dW∑

k=1

σik(x)σ jk(x)

 ∂i∂ j f (x) +

d∑

i=1

bi(x)∂i f (x),

Bk f (x) ,
d∑

i=1

αik(x)∂i f (x).

(6)

In other words, πt is a probability measure-valued process solving the stochastic partial differ-
ential equation (spde) corresponding to the adjoint of (5). To avoid the nonlinearities in (5), a
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simpler linear version is obtained by utilizing the reference probability measure device. Define a
P-equivalent probability measure P̃ by

dP̃
dP

∣∣∣∣FT
= ζT , exp

−
dU∑

k=1

∫ T

0
hk(Xs) dUk

s −
1
2

dU∑

k=1

∫ T

0
h2

k(Xs) ds

 . (7)

From the Girsanov change of measure theorem (recall that h is bounded so that E[ζt] = 1), it
follows that under P̃ the observation Y is a Brownian motion and the signal X satisfies

dXt = (b(Xt) − αh(Xt)) dt + α(Xt) dYt + σ(Xt) dWt. (8)

We now set

ρt f , Ẽ
[

f (Xt)ζ−1
t

∣∣∣∣F Y
t

]
, (9)

with ζt defined in (7). Then by Bayes formula, πt f =
ρt f
ρt1

and moreover, ρt f solves the linear
stochastic differential equation

d(ρt f ) = ρt(A f ) dt +

dY∑

k=1

[
ρt(hk f ) + ρt(Bk f )

]
dYk

t , (10)

with A, Bk from (6). The measure-valued Markov process ρt is called the unnormalized condi-
tional distribution of X and will play a major role in the subsequent analysis. Under the given
smoothness assumptions, it is known [2] that πt (and ρt) will possess a smooth density in W1

p for
all p > 1 and t > 0.

Returning to our optimal stopping problem (3), let us define the value function V by

V(t, ξ, y; T ) , sup
τ≤T, F Y−adapted

E
[
g(τ, Xτ,Yτ)

∣∣∣ Xt ∼ ξ, Yt = y
]
.

Economically, V denotes the optimal reward that can be obtained on the horizon [t,T ] starting
with initial condition Yt = y and Xt ∼ ξ. Using conditional expectations we may write,

V(t, ξ, y) = sup
t≤τ≤T

Et,ξ,y [
πτg(τ, ·,Yτ)]

= sup
t≤τ≤T

Ẽt,ξ,y[ρτg(τ, ·,Yτ)]

= sup
t≤τ≤T

Ẽt,ξ,y[G(τ, ρτ,Yτ)], where G(t, ξ, y) ,
∫

Rd
g(t, x, y)ξ(dx), (11)

and where Ẽt,ξ,y denotes P̃-expectation conditional on ρt = ξ, Yt = y.
Equation (11) achieved two key transformations. First, its right-hand-side is now a standard

optimal stopping problem featuring the Markov hyperstate (ρt,Yt). Secondly, (11) has separated
the filtering and optimization steps by introducing the fully observed problem through the new
state variable ρt. However, this new formulation remains complex as ρt is an infinite-dimensional
object. With a slight abuse of notation, we will write V(t, ρt,Yt) to denote the value function in
terms of the current unnormalized distribution ρt.

As can be seen from the last two lines of (11), one may solve (3) either under the original
physical measure P using πt, or equivalently under the reference measure P̃ using ρt. In our
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approach we will work with the latter formulation due to the simpler dynamics of ρt and more
importantly due to the fact that under P̃ one can separate the evolution of Y and X. In particular,
under P̃, Y is a Brownian motion and can be simulated entirely on its own. In contrast, under P,
the evolutions of πt and Y are intrinsically tied together due to the joint (and unobserved) noise
source (Ut).

2.3. Snell Envelope
Let us briefly summarize the Snell envelope theory of optimal stopping in our setting. All

our results are stated under the P̃ reference measure, following the formulation in (11). For any
F Y -stopping time σ, define

Ẑ(σ) = sup
σ≤τ≤T

Ẽ
[
G(τ, ρτ,Yτ)|F Y

σ

]
. (12)

Proposition 1 ([29]). The set (Ẑσ) form a supermartingale family, i.e. there exists a continuous
process Z, such that Ẑ(σ) = Zσ, Z stopped at time σ. Moreover, an optimal time τ for (11)
exists and is given by τ = inf{t : Zt = G(t, ρt,Yt)}.

The above processZ is called the Snell envelope of the optimal stopping problem (11). The
proposition implies that to solve (11) it suffices to compute the Snell envelopeZ. We denote by
t ≤ τ∗t ≤ T an optimal stopping time achieving the supremum in Zt = Ẽ[G(τ∗t , ρτ∗t ,Yτ∗t )|F Y

t ]. By
virtue of the (strong) Markov property of (ρt,Yt) and the fact that ρt is a sufficient statistic for
the distribution of Xt |F Y

t it follows that V(t, ρt,Yt) = supt≤τ≤T Ẽ[G(τ, ρτ,Yτ)|F Y
t ] = Zt and (3) is

equivalent to finding τ∗0 above. Mazziotto [29] also gave a formal proof of the equivalence of the
Snell envelopes under P and P̃ that we discussed in the end of the previous section.

To make computational progress in computing τ∗0, it will be eventually necessary to discretize
time. Thus, we restrict possible stopping times to lie in the set S∆ = {0,∆t, 2∆t, . . . , T }, and label
the corresponding value function (of the so-called Bermudan problem) as

V∆(t, ξ, y) = sup{Ẽt,ξ,y[G(τ, ρτ,Yτ)] : t ≤ τ is S∆-valued ,F Y -adapted}.
In this discrete version, since one either stops at t or waits till t + ∆t, the dynamic programming
principle implies that the Snell envelope satisfies

V∆(t, ρt,Yt) = max
(
G(t, ρt,Yt), Ẽ

[
V∆(t + ∆t, ρt+∆t,Yt+∆t)|F Y

t

])
. (13)

2.4. Continuation Values and Cashflow Functions
For notational convenience we now write Zt ≡ (t, ρt,Yt) and Gt = G(Zt). Let

qt = qt(Zt) , Ẽ[V∆(Zt+∆t)|F Y
t ],

denote the continuation value. Then the Snell envelope property (13) implies that qt satisfies the
recursive equation

qt = Ẽ
[
max(Gt+∆t, qt+∆t)|F Y

t

]
. (14)

The optimal stopping time τ∗t also satisfies a recursion, namely

τ∗t = τ∗t+∆t1{qt>Gt} + t1{qt≤Gt}. (15)
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In other words, when the continuation value is bigger than the immediate expected reward, it is
optimal to wait; otherwise it is optimal to stop. Equation (15) also highlights the fact that the
continuation value qt serves as a threshold in making the stopping decision. Associated with a
stopping rule τ∗ defined above is the future cashflow function. Denote Bt(q) , 1{qt≤Gt} and its
complement by Bc

t (q) ≡ 1 − Bt(q), and starting from the timepoint t, define the expected future
cashflow as

ϑt(q)(Z) ,
T∑

s=t

G(Zs) · 1Bs(q) · 1Bc
t (q)·Bc

t+∆t(q)···Bc
s−∆t(q). (16)

ϑt(q) is a path function whose value depends on the realization of (Zt) between t and T , as well
as the threshold function q. Note that (16) can be defined for any threshold rule q′ by simply
using Bt(q′), etc. instead. In discrete time using the fact that τ∗t is an F Y -stopping time and (15)
we get

qt(Zt) = Ẽ[V∆(Zt+∆t)|F Y
t ] = Ẽ[G(τ∗t+∆t, ρτ∗t+∆t

,Yτ∗t+∆t
)|F Y

t ]

= Ẽ


T∑

s=t+∆t

G(s, ρs,Ys)1{τ∗t+∆t=s}
∣∣∣∣F Y

t

 = Ẽ
[
ϑt+∆t(q)(Z)

∣∣∣F Y
t

]
. (17)

It follows that knowing ϑ(q), one can back-out the continuation values q and then recover
the value function itself from V∆(Zt) = max(G(Zt), q(Zt)). In particular, for t = 0, we obtain
V∆(0, ξ0, y0) = max(G(Z0), q0(Z0)). The approximation algorithm will compute q and the as-
sociated ϑ by repeatedly evaluating the conditional expectation in (17) and updating (16). The
advantage in using cashflows ϑ(q) rather than q itself is that an error in computing q is not propa-
gated backwards unless it leads to a wrong stopping decision for (15). As a result, the numerical
scheme is more stable.

Remark 2. Egloff [13] discusses a slightly more general situation, where the look-ahead cash-
flows ϑ are taken not on the full horizon [t,T ] but only some number w of steps ahead. This then
produces

ϑt,w(q)(Z) =

t+w∆t∑

s=t

G(Zs) · 1Bc
t Bc

t+∆t ···Bs + qt+w∆t(Zt+w∆t) · 1Bc
t Bc

t+∆t ...·Bc
t+w∆t

, (18)

and one still has qt(Zt) = Ẽ[ϑt+1,w(q)(Z)|F Y
t ] for any w = 0, . . . , T − t − 1. In particular, the case

w = 0 is the Tsitsiklis-van Roy [40] algorithm,

ϑt,0(q) = G(Zt)1Bt + qt(Zt)1Bc
t

= max(Gt, qt). (19)

To compute (17), the corresponding conditional expectation will be approximated by a finite-
dimensional projection H . Indeed, by definition of conditional expectation with respect to the
Markov state (ρt,Yt), we have qt(Zt) = Ẽ[ϑt+∆t(q)(Z)|F Y

t ] = F(ρt,Yt) for some function F. Let
(B j)∞j=1 be a (Schauder) basis for the Banach space R+ × P(Rd). Then as r → ∞, F (and qt) can
be approximated arbitrarily well by the truncated sum

qt(Zt) ' q̂t(Zt) ,
r∑

j=1

α jB j(ρt,Yt) = prH ◦Ẽ
[
ϑt+∆t(q)(Z)

∣∣∣F Y
t

]
, (20)
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where the projection manifold (or architecture) is H = span(B j(ξ, y), j = 1, . . . , r). As long
as (20) does not modify much the resulting stopping sets Bt(q̂), one expects that the resulting
cashflow function ϑ(q̂) will be close to the true one ϑ(q). In our filtering context, the extra
modification is that Zt must itself be approximated by a finite-dimensional filter Zn

t . However,
if the approximation is high-dimensional, then it should have very little effect on the projection
step of the Snell envelope in (20).

2.5. Analytic Approach

We briefly recall the analytic approach to optimal stopping theory which characterizes the
value function V(t, ξ, y) in terms of a parabolic-type free boundary problem. This is in direct
counterpart to standard optimal stopping problems for diffusion models.

The major difficulty is the infinite-dimensional nature of the state variable π. Limited results
exist for the corresponding optimal stopping problems on Polish spaces, see e.g. [30, 29]. In
particular, [30] characterize V as the minimal excessive function dominating G in terms of the
(Feller) transition semigroups of (πt,Yt). A more direct theory is available when πt ∈ H belongs
to a Hilbert space; this will be the case if ξ0 (and therefore πt for all t) admits a smooth L2-
density. Even then, since the smoothness properties of V with respect to ξ are unknown, one
must work with viscosity solutions to second-order pdes as is common in general stochastic
control theory. The following proposition is analogous to Theorem 2.2 in [16]. Denote by D the
Fréchet derivative operator and for a twice Fréchet differentiable test function φ(t, ξ, y) let

Lφ =
1
2

tr
(
(σσT + ααT )D2

ξξφ
)

+ 〈b,Dξφ〉 + h∂yφ + αDξφ · ∂yφ, (21)

(with 〈·, ·〉 denoting the inner product in H) be the infinitesimal generator of the Markov process
(πt,Yt).

Proposition 2. The value function V(t, π, y) is the unique viscosity solution of


Vt +LV ≤ 0,
V(t, π, y) ≥ G(t, π, y).

(22)

Moreover, V is bounded and locally Lipschitz (with respect to the Hilbert norm).

In principle the infinite-dimensional free boundary problem (22) can be tackled by a variety
of numerical methods including the projection approach that passes to a finite-dimensional subset
of L2(Rd). We will return to (22) in Section 5.1.

3. New Algorithm

In this section we describe a new numerical simulation algorithm to solve (11). This al-
gorithm will be a combination of the minimal-variance branching particle filter algorithm for
approximating πt and ρt, described in Section 3.1, and the regression Monte Carlo algorithm
described in Section 3.2.
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3.1. Particle Filtering
The main idea of particle filters is to approximate the measure-valued conditional distribution

πt by a discrete system of point masses that follows a mutation-selection algorithm to reproduce
the dynamics of (10). In what follows we summarize the particular algorithm proposed in [7, 9,
8]. We assume that we are given (1)-(2) with continuous observation of (Yt). Fix n > 0; we shall
approximate πt by a particle system πn

t of n particles. The interacting particle system consists of
a collection of n weights an

j (t) and corresponding locations vn
j(t) ∈ Rd, j = 1, . . . , n. We think

of vn
j as describing the evolution of the n-th particle and of an

j (t) ∈ R+ as its importance in the
overall system. Begin by initializing the system by independently drawing vn

j (0) from the initial
distribution X0 ∼ ξ0 and taking an

j (0) = 1 ∀ j. Let δ be a parameter indicating the frequency of
mutations; the description below is for a generic time step t ∈ [mδ, (m + 1)δ), assuming that we
already have vn

j (mδ) and an
j (mδ) ≡ 1.

First, for mδ ≤ t < (m + 1)δ we have

vn
j (t) = vn

j (mδ) +

∫ t

mδ
(b − αh)(vn

j(s)) ds +

∫ t

mδ
α(vn

j(s)) dYs +

∫ t

mδ
σ(vn

j (s)) dW ( j)
s , (23)

where W ( j) are n independent P̃-Wiener processes. Thus, each particle location evolves inde-
pendently according to the law of X under P̃. The unnormalized weights an

j (·) are given by the
stochastic exponentials

an
j (t) = 1 +

dY∑

k=1

∫ t

mδ
an

j (s)hk(vn
j (s)) dYk

s = exp


dY∑

k=1

∫ t

mδ
hk(vn

j (s)) dYk
s −

1
2

dY∑

k=1

∫ t

mδ
hk(vn

j (s))2 ds

 .

(24)

Let

ān
j ((m + 1)δ−) ,

an
j ((m + 1)δ−)

∑
j an

j ((m + 1)δ−)
∈ (0, 1),

denote the normalized weights just before the next mutation time. Then at t = (m + 1)δ each
particle produces on

j ((m+1)δ) offspring inheriting the parent’s location, with the branching carried
out such that



on
j ((m + 1)δ) =


bnān

j ((m + 1)δ−)c with prob. 1 − {nān
j ((m + 1)δ−)},

1 + bnān
j ((m + 1)δ−)c with prob. {nān

j ((m + 1)δ−)},
n∑

j=1

on
j ((m + 1)δ) = n,

(25)

where {x} denotes the fractional part of x ∈ R. Note that the different on
j ’s are correlated so that

the total number of particles always stays constant at n. One way to generate such on
j ’s is given

in the Appendix of [7]. Following the mutation, particle weights are reset to an
j((m + 1)δ) = 1

and one proceeds with the next propagation step.
With this construction we now set for mδ ≤ t < (m + 1)δ,



πn
t ,

n∑

j=1

nan
j(t)∑n

`=1 an
`
(t)
δvn

j (t)(·);

ρn
t ,


m∏

`=1


1
n

n∑

j=1

an
j (`δ−)


 ·


1
n

n∑

j=1

an
j (t)δvn

j (t)(·)
 .

(26)
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Interpreted as a probability measure on Rd, πn
t (ρn

t ) is an approximation to the true πt (resp. ρt)
as indicated by the following

Proposition 3 ([7], Theorem 5). There exist constants C1(t),C2(t) such that for any f ∈ C1
b(Rd),

Ẽ
[
(
ρn

t f − ρt f
ρt1

)2
]
≤ C1(t)

n
‖ f ‖21,∞, (27)

which in turn implies that (since E[ζ2
t ] is bounded)

E
[
(πn

t f − πt f )2
]
≤ C2(t)

n
‖ f ‖21,∞, (28)

with Ci(t) = O(et · t).
Similar results can be obtained under the assumption that Y is observed discretely every δ

time units. In that case one simply takes,

an
j ((m + 1)δ−) = exp


dY∑

k=1

hk(vn
j (mδ)) · (Yk

(m+1)δ − Yk
mδ) −

1
2

dY∑

k=1

hk(vn
j(mδ))

2 · δ
 ,

with the rest of the algorithm remaining unchanged.
The use of discrete point masses in the interacting particle filter renders the analytical results

based on Hilbert-space theory (e.g. (22)) inapplicable. This can be overcome by considering reg-
ularized particle filters [24], where point masses are replaced by smooth continuous distributions
and the particle branching procedure switches back to a true re-sampling step.

3.2. Regression Monte Carlo

The main idea of our algorithm is to simulate N paths of the Z process (or rather the particle
approximation (Zn)), yielding a sample (zk

t ), k = 1, 2, . . . ,N, t = 0,∆t, . . . , T . To simulate (zi
t),

we first simulate the Brownian motion (Yt) under P̃, and then re-compute ρn
t along the simulated

paths as described in the previous subsection. Using this sample and approximation architectures
Ht of (20), we approximate the projection prH through an empirical least-squares regression.
Namely, an empirical continuation value is computed according to

q̂t = arg min
f∈Ht

1
N

N∑

i=1

| f (zi
t) − ϑN(q̂)(zi

t+∆t)|2 ' prH ◦E[ϑN
t+∆t(q̂)(Zn)|F Y

t ], (29)

where ϑN is the empirical cashflow function along simulated paths obtained using the future q̂’s.
One then updates pathwise ϑN and τ using (16) and (15) respectively and proceeds recursively
backwards in time. This is the same idea as the celebrated regression Monte Carlo algorithm
of Longstaff and Schwartz [26]. The resulting error between q̂ and the true q will be studied in
Section 4 below.

Many choices exist regarding the selection of basis functions B j(ρt,Yt) for the regression
step. As a function of y, one may pick any basis for L2(RdY , P̃), e.g. the Laguerre polynomials.
As a function of ρ, a natural probabilistic choice involves the moments of Xt |F Y

t , i.e.
∑

i αi(ρt xi).
It is also known that using a basis function of the form EUR(z) , Ẽt[G(ZT )] (the conditional
expectation of the terminal reward or the “European” counterpart,) is a good empirical choice.

12



Remark 3. If one only uses the first two conditional moments of X, ρt x and ρt x2 inside the
basis functions, then our algorithm can be seen as the non-Markovian analogue of applying the
extended Kalman filter for the partial observations of X and then computing the (pseudo)-Snell
envelope of (3). In that sense, our approach generalizes previous filtering projection methods
[5, 23] for (3).

3.3. Overall Algorithm

For the reader’s convenience, we now summarize the overall algorithm for solving (3).

• Select model parameters N (number of paths); n (number of particles per path); ∆t (time
step for Snell envelope); δ (time step for observations and particle mutation); Bi (regression
basis functions); r (number of basis functions).

• Simulate N paths of (yk
t ) under P̃ (which is a Brownian motion) with fixed initial condition

yk
0 = y0.

• Given the path (yk
t ), use the particle filter algorithm (23)-(24)-(26) to compute ρn,k

t along
that path, starting with ρn,k

0 ∼ ξ0.

• Initialize q̂k(T ) = ϑN,k
T (q̂) = G(zk

T ), τk(T ) = T , k = 1, . . . ,N.

• Repeat for t = (M − 1)∆t, . . . ,∆t, 0:

– Evaluate the basis functions Bi(zk
t ), for i = 1, . . . , r and k = 1, . . . ,N.

– Regress

αN
t , arg min

α∈Rr

N∑

k=1

∣∣∣∣ϑN,k
t+∆t(q̂) −

r∑

i=1

αiBi(zk
t )
∣∣∣∣
2
.

– For each k = 1, . . . ,N do the following steps: Set q̂k(t) =
∑r

i=1 α
N,i
t Bi(zk

t ).

– Compute G(zk
t ) = ρn,k

t g(t, ·, yk
t ).

– Update ϑN,k
t (q̂) =


G(zk

t ) if q̂k
t < G(zk

t );

ϑN,k
t+∆t(q̂) otherwise.

– Update τk(t) =


t if q̂k(t) < G(zk

t );

τk(t + ∆t) otherwise.

• End loop;

• Return V∆(0, ξ0, y0) ' 1
N

∑N
k=1 ϑ

N,k
0 (q̂).

Note that it is not necessary to save the entire particle systems (vn,k
j (m∆t))n

j=1 after the simu-
lation step; rather one needs to keep around just the evaluated basis functions (Bi(zk

t ))r
i=1, so that

the total memory requirements are O(N · M · r). In terms of number of operations the overall
algorithm complexity is O(M · N · (n2 + r3)), with the most intensive steps being the resampling
of the filter particles and the regression step against the r basis functions.
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4. Error Analysis

This section is devoted to the error analysis of the algorithm proposed in Section 3.3. Looking
back, our numerical scheme involves three main errors. These are:

• Error in computing ρt which arises from using a finite number of particles and the resam-
pling error of the particle filter ρn

t ;

• Error in projecting the cashflow function ϑ onto the span of basis functions H and the
subsequent wrong stopping decisions;

• Error in computing projection coefficients αi due to the use of finite-sample least-squares
regression.

We note that the filtering error is propagated forward, while the projection and empirical
errors are propagated backwards. In that sense, the filtering error is more severe and should
be controlled tightly. The projection error is the most difficult to deal with since we only have
crude estimates on the dependence of the value function on ρt. Consequently, the provable error
estimates are very pessimistic. Heuristic considerations would imply that this error is in fact
likely to be small. Indeed, the approximate decision rule will be excellent as long as P̃({qt >
Gt} ∩ {q̂t ≤ Gt}) is small, since the given event is the only way that the optimal cashflows are
computed incorrectly. By applying domain knowledge the above probability can be controlled
through customizing the projection architecture Ht. For instance, as mentioned above, using
EUR(z) as one of the basis functions is often useful.

The sample regression error is compounded due to the fact that we do not use the true basis
functions but rather approximations based on Zn. This implies the presence of error-in-variable
during the regression step from the pathwise filtering errors. It is well-known (see e.g. [15])
that this leads to attenuation in the computed regression result, i.e. |αN,i| ≤ |αi|. An extensive
statistical literature treats error reduction methods to counteract this effect, a topic that we leave
to future research.

As a notational shorthand, in the remainder of this section we write Ẽt to denote expectations
(as a function on Rd×RdY ) conditional on Yt = y and ρt = ξ. We recall that the optimal cashflows
satisfy

qt = Ẽt[ϑt+∆t(q)(Z)],

while the approximate cashflows are

q̂t = prN
H ◦Ẽt[ϑN

t+∆t(q̂)(Zn)].

Note that inside the algorithm, q̂t is evaluated not at the true value Zt = (ρt,Yt), but at the
approximate point Zn

t . To emphasize the process under consideration we denote by qn
t ≡ qn

t (Zn
t )

the continuation function resulting from working with the Zn-process. Observe that the difference
between qn and the true q is solely due to the inaccurate recursive evaluation of the reward G
(since Y is simulated exactly); thus if the original reward g in (3) is independent of X then
qn ≡ q.

The error analysis will be undertaken in two steps. In the first step, we consider the mean-
squared error between the continuation value qt based on the true filter ρt and the continuation
value qn

t based on the approximate filter ρn
t . In the second step, we will study the difference

between qn
t and the approximate q̂t above. Throughout this section, ‖ · ‖2 ≡ Ẽ[| · |2]1/2.
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Lemma 1. There exists a constant C(T ), such that for all t ≤ T

∥∥∥Ẽt[ϑt+∆t(qn) − ϑt+∆t(q)]
∥∥∥

2 ≤
(T − t) ·C(T )

∆t · √n
· ‖g‖1,∞. (30)

Proof. Suppose without loss of generality that qn(Zn
t ) > q(Zt). Let τ be an optimal stopping time

for the problem represented by qn. Clearly such τ is sub-optimal for q; moreover since both Z
and Zn are F Y -adapted, τ is admissible for q. Therefore,

(qn(Zn
t ) − q(Zt))2 ≤ Ẽt

[
G(Zn

τ ) −G(Zτ)
]2

=


T∑

s=t+∆t

Ẽt
[
(G(Zn

s ) −G(Zs)) · 1{τ=s}
]


2

≤
T∑

s=t+∆t

T − t
∆t
· Ẽt

[|G(Zn
s ) −G(Zs)|2],

where the last line is due to Jensen’s inequality. Averaging over the realizations of (Zn
t ,Zt) we

then obtain

Ẽ[|qn(Zn
t ) − q(Zt)|2] ≤

T∑

s=t+∆t

T − t
∆t
· Ẽ[|G(Zn

s ) −G(Zs)|2]

≤
T∑

s=t+∆t

(T − t)C(T )
∆t · n ‖g‖21,∞ =

(T − t)2 ·C(T )
∆t2 · n ‖g‖21,∞,

using Proposition 3.
Note that this error explodes as ∆t → 0 due to the fact that we do not have tight bounds for

Ẽt[|G(Zn
s ) −G(Zs)|21{τ=s}]. In general, one expects that Ẽt[|G(Zn

s ) −G(Zs)|21{τ=s}] ' Ẽt[|G(Zn
s ) −

G(Zs)|2] · P(τ = s) which would eliminate the ∆t−2 term on the last line above.

In the second step we study the L2-difference of the unnormalized continuation values, ‖qn
t −

q̂t‖2 ≡ Ẽ[(qn
t (Zn

t ) − q̂t(Zt))2]1/2. This total error can be decomposed as

‖q̂t − qt‖2 ≤
∥∥∥prN
H ◦Ẽt[ϑN

t+∆t(q̂)(Zn)] − prH ◦Ẽt[ϑt+∆t(q̂)(Zn)
∥∥∥

2︸                                                           ︷︷                                                           ︸
E1

+
∥∥∥prH ◦Ẽt[ϑt+∆t(q̂)(Zn)] − Ẽt[ϑt+∆t(q̂)(Zn)]

∥∥∥
2︸                                                    ︷︷                                                    ︸

E2

+
∥∥∥Ẽt[ϑt+∆t(q̂)(Zn) − ϑt+∆t(q)(Zn)]

∥∥∥
2︸                                       ︷︷                                       ︸

E3

.

(31)

The three error terms Ei on the right-hand-side of (31) are respectively the empirical error E1,
the projection error E2, and the recursive error from the next time step E3. Each of these terms
is considered in turn in the next several lemmas with the final result summarized in Theorem 1.
The first two lemmas have essentially appeared in [13] and the proofs below are provided for
completeness.
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Lemma 2 ([13, Lemma 6.3]). Define the centered loss random variable

`t(q̂)(Zn) = |q̂t − ϑt+∆t(q̂)|2 − | prH ◦Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2. (32)

Then

E2
1 = ‖q̂t − prH ◦Ẽt[ϑt+∆t(q̂)]‖22 ≤ Ẽ[`t(q̂)(Zn)]. (33)

Proof. First note that

‖q̂t − prH ◦Ẽt[ϑt+∆t(q̂)]‖22 + ‖ prH ◦Ẽt[ϑt+∆t(q̂)] − Ẽt[ϑt+∆t(q̂)]‖22 ≤ ‖q̂t − Ẽt[ϑt+∆t(q̂)]‖22, (34)

because q̂t ∈ Ht belongs to the convex space Ht, while prH ◦Ẽt[ϑt+∆t(q̂)] ∈ Ht is the projection
of ϑt+∆t(q̂). Therefore the three respective vectors form an obtuse triangle in L2:

Ẽ
[
(q̂t − prH ◦Ẽt[ϑt+∆t(q̂)]) · (prH ◦Ẽt[ϑt+∆t(q̂)] − Ẽt[ϑt+∆t(q̂)])

]
≤ 0.

Direct expansion using the tower property of conditional expectations and the fact that q̂t ∈
F Y

t shows that Ẽ[(q̂t − Ẽt[ϑt+∆t(q̂)]) · (Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂))] = 0, so that

Ẽ
[
|q̂t − Ẽt[ϑt+∆t(q̂)]|2

]
+ Ẽ

[
|Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2

]
= Ẽ

[
|q̂t − ϑt+∆t(q̂)|2

]
. (35)

Similarly,

Ẽ
[
(prH ◦Ẽt[ϑt+∆t(q̂)] − Ẽt[ϑt+∆t(q̂)]) · (Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂))

]
= 0,

and so

Ẽ
[
| prH ◦Ẽt[ϑt+∆t(q̂)] − Ẽt[ϑt+∆t(q̂)]|2

]
= Ẽ

[
| prH ◦Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2

]

− Ẽ
[
|Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2

]
. (36)

Combining (34)-(35)-(36) we find
∥∥∥∥q̂t − prH ◦ Ẽt[ϑt+∆t(q̂)]

∥∥∥∥
2

2
≤ Ẽ

[
|q̂t − ϑt+∆t(q̂)|2 − |Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2

−
{
| prH ◦Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2 − |Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2

}]
= Ẽ[`t(q̂)(Zn)].

The above lemma shows that the squared error E2
1 resulting from the empirical regression

used to obtain q̂t (which recall is a proxy for Ẽt[ϑt+∆t(q̂)]) can be expressed as the difference
between the expected actual difference |q̂t − ϑt+∆t(q̂)|2 versus the theoretical best average error
after the projection | prH ◦Ẽt[ϑt+∆t(q̂)] − ϑt+∆t(q̂)|2.

Lemma 3 (cf. [13, Proposition 6.1]). We have E2 ≤ 2‖Ẽt[ϑt+∆t(qn)−ϑt+∆t(q̂)]‖2+inf f∈Ht ‖ f−qn
t ‖2.

Proof. We re-write,

E2 =
∥∥∥prH ◦Ẽt[ϑt+∆t(q̂)] − Ẽt[ϑt+∆t(q̂)]

∥∥∥
2 ≤

∥∥∥prH ◦Ẽt[ϑt+∆t(q̂)] − prH ◦Ẽt[ϑt+∆t(qn)]
∥∥∥

2

+
∥∥∥prH ◦Ẽt[ϑt+∆t(qn)] − Ẽt[ϑt+∆t(qn)]

∥∥∥
2 + ‖Ẽt[ϑt+∆t(qn) − ϑt+∆t(q̂)]‖2

≤ 2‖Ẽt[ϑt+∆t(qn) − ϑt+∆t(q̂)]‖2 + inf
f∈Ht

‖ f − Ẽt[ϑt+∆t(qn)]‖2
= 2

∥∥∥Ẽt[ϑt+∆t(qn) − ϑt+∆t(q̂)]
∥∥∥

2 + inf
f∈Ht

‖ f − qn
t ‖2,

where the second inequality uses the contraction property of the projection map prH and the
definition of projection onto the manifoldHt.
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Lemma 4. We have for any p > 1

∥∥∥∥Ẽt[ϑt+∆t(qn) − ϑt+∆t(q̂)]
∥∥∥∥

p
≤

T∑

s=t+∆t

∥∥∥q̂s − qn
s

∥∥∥
p. (37)

Proof. To simplify notation we drop the function arguments and also write qt+1,Gt+1, etc., to
mean qt+∆t, etc. in the proof below. By definition of the cashflow function, E3 := ‖Ẽt[ϑt+1(qn) −
ϑt+1(q̂)]‖p =

∥∥∥∥Ẽt[Gt+11{qn
t+1≤Gt+1} + ϑt+2(qn)1{qn

t+1>Gt+1} −Gt+11q̂t+1≤Gt+1 − ϑt+2(q̂)1{q̂t+1>Gt+1}]
∥∥∥∥

p

=
∥∥∥∥Ẽt[Gt+1(1{Gt+1≥qn

t+1} − 1{Gt+1≥q̂t+1}) + ϑt+2(qn)1{qn
t+1>Gt+1} − ϑt+2(q̂)1{q̂t+1>Gt+1}]

∥∥∥∥
p

≤ ‖Ẽt[A1]‖p +
∥∥∥∥Ẽt[qn

t+1(1{Gt+1≥qn
t+1} − 1{Gt+1≥q̂t+1}) + ϑt+2(qn)1{Gt+1<qn

t+1} − ϑt+2(q̂)1{Gt+1<q̂t+1}]
∥∥∥∥

p
,

where

A1 = (Gt+1 − qn
t+1) ·

(
1{Gt+1≥qn

t+1} − 1{Gt+1≥q̂t+1}
)

= (Gt+1 − qn
t+1)

(
1{q̂t+1>Gt+1≥qn

t+1} − 1{qn
t+1>Gt+1≥q̂t+1}

)

≤ (q̂t+1 − qn
t+1)1{q̂t+1>Gt+1≥qn

t+1} − (q̂t+1 − qn
t+1)1{qn

t+1>Gt+1≥q̂t+1}

≤ |q̂t+1 − qn
t+1|.

For the remaining terms, using the fact that qn
t+1 = Ẽ[ϑt+2(qn)|F Y

t+1] we obtain

Ẽt

[
qn

t+1(1{Gt+1≥qn
t+1} − 1{Gt+1≥q̂t+1})

]
= Ẽt

[
ϑt+2(qn)(1{Gt+1≥qn

t+1} − 1{Gt+1≥q̂t+1})
]
,

and therefore
∥∥∥Ẽt[ϑt+1(qn) − ϑt+1(q̂)]

∥∥∥
p ≤

∥∥∥∥Ẽt

[
ϑt+2(qn)

(
1{Gt+1<qn

t+1} + 1{Gt+1≥qn
t+1} − 1{Gt+1≥q̂t+1}

)

− ϑt+2(q̂)1{Gt+1<q̂t+1}
]∥∥∥∥

p
+

∥∥∥Ẽt[|q̂t+1 − qn
t+1|]

∥∥∥
p

≤ ‖q̂t+1 − qn
t+1‖p +

∥∥∥Ẽt[(ϑt+2(qn) − ϑt+2(q̂))1{Gt+1<q̂t+1}]
∥∥∥

p

≤ ‖q̂t+1 − qn
t+1‖p + ‖ϑt+2(qn) − ϑt+2(q̂)‖p .

By induction, E3 ≤ ∑T
s=t+1 ‖q̂s − qn

s‖p follows.

Based on Lemmas 1-2-3-4, we obtain the main

Theorem 1. We have

‖q̂t(Zn
t ) − qt(Zt)‖2 ≤ 4(T−t)/∆t max

t≤s≤T

{
inf
f∈Hs

‖ f − qn
s‖2 +

√
Ẽ[ls(q̂)]

}
+

C(T )(T − t)
∆t · √n

‖g‖1,∞. (38)

Proof. Combining Lemmas 2-3-4 we find that

‖q̂t − qn
t ‖2 ≤

√
Ẽ[lt(q̂)] + inf

f∈Ht

‖ f − qn
t ‖2 + 3

T∑

s=t+∆t

‖q̂s − qn
s‖2.
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Therefore, iterating

‖q̂t − qn
t ‖2 ≤

√
Ẽ[lt(q̂)] + inf

f∈Ht

‖ f − qn
t ‖2 + 3 ·

(√
Ẽ[lt+∆t(q̂)] + inf

f∈Ht+∆t

‖ f − qn
t+∆t‖2

)

+ 9 ·
(√
Ẽ[lt+2∆t(q̂)] + inf

f∈Ht+2∆t

‖ f − qn
t+2∆t‖2

)
+ . . .

≤ 4(T−t)/∆t max
t≤s≤T

{√
Ẽ[ls(q̂)] + inf

f∈Hs

‖ f − qn
s‖2

}
.

Finally, we have ‖q̂t − qt‖2 ≤ ‖q̂t − qn
t ‖2 + ‖qn

t − qt‖2, and applying Lemma 1 the result (38)
follows.

4.1. Convergence

To obtain convergence, one proceeds as follows. First, taking n→ ∞ eliminates the filtering
error so that Zn → Z and the corresponding errors in evaluating G vanish. Next, one takes
N → ∞, reducing the empirical error and the respective centered loss term Ẽ[lt(q̂)]. Thirdly,
one increases the number of basis functions r → ∞ in order to eliminate the projection error
inf f∈Hs ‖ f − qn

s‖. Finally, taking ∆t → 0 we remove the Snell envelope discretization error.
The performed error analysis shows the major trade-off regarding the approximation archi-

tectures Ht. On the one hand, Ht should be large in order to minimize the projection errors
min f∈Ht ‖ f − qn

t ‖. On the other hand,Ht should be small to control the empirical variance of the
regression coefficients. With many basis functions, one requires a very large number of paths to
ensure that q̂ is close to q. Finally, Ht should be smooth in order to further bound the empirical
regression errors and the filtering error-in-variable accumulated when computing the regression
coefficients.

In the original finite-dimensional study of [13], the size of Ht was described in terms of the
Vapnik-Cervonenkis (VC) dimensions nVC and the corresponding covering numbers. Using this
theory, [13] showed that overall convergence can be obtained for example by using the polyno-
mial basis for Ht and taking the number of paths as N = rd+2k where r is the number of basis
functions, d is the dimension of the state variable and k is the smoothness of the payoff function
g ∈ Wk

p. In the infinite-dimensional setting of our model, the VC-dimension is meaningless and
therefore such estimates do not apply. One could trivially treat ρn

t as an n-dimensional object,
but then the resulting bounds are absurdly poor. It appears difficult to state a useful result on the
required relationship between the number of basis functions and the number of paths needed for
convergence.

Remark 4. A possible alternative is to apply the Tsitsiklis-van Roy algorithm [40], which directly
approximates qt (rather than ϑ) using the recursion formula (19): qt = Ẽt[max(G(Zt+∆t), q(Zt+∆t))].
Like in Section 3, the approximate algorithm would consist in computing via regression Monte
Carlo the empirical continuation value

q̂t = prN
H ◦Ẽt[max(G(Zn

t+∆t), q̂(Zn
t+∆t))].

In such a case, the error between q̂t and qt admits the simpler decomposition (using max(a, b) ≤
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a + b)
∥∥∥q̂t(Zn

t ) − qt(Zt)
∥∥∥

2 ≤
∥∥∥prN
H ◦Ẽt[max(G(Zn

t+∆t), q̂(Zn
t+∆t)] − prH ◦Ẽt[max(G(Zn

t+∆t), q̂(Zn
t+∆t))]

∥∥∥
2
(39)

+
∥∥∥prH ◦Ẽt[max(G(Zn

t+∆t), q̂(Zn
t+∆t))] − Ẽt[max(G(Zn

t+∆t), q̂(Zn
t+∆t))]

∥∥∥
2

+
∥∥∥Ẽt[G(Zn

t+∆t) −G(Zt+∆t)]
∥∥∥

2 +
∥∥∥Ẽt[q̂(Zn

t+∆t) − q(Zn
t+∆t)]

∥∥∥
2

+
∥∥∥Ẽt[q(Zn

t+∆t) − q(Zt+∆t)]
∥∥∥

2 .

We identify the first two terms as the empirical E1 and projection E2 errors (as in Lemmas 2
and 3), the third term as the G-evaluation error, the fourth term as the next-step recursive error,
and finally the last term as the sensitivity error of q with respect to Z. Controlling the latter
error requires understanding the properties of the continuation (or value) function in terms of
current state. This seems difficult in our infinite-dimensional setting and is left to future work.
Nevertheless, proceeding as in the previous subsection and iterating (39), we obtain for some
constants C3,C4

‖q̂t − qt‖2 ≤ C3 · (T − t)
∆t

· max
t≤s≤T

{
inf
f∈Hs

‖ f − q̂s‖2 +

√
Ẽ[ls(q̂)] +

C4√
n
‖g‖1,∞ + ‖q(Zn

s ) − q(Zs)‖2
}
,

so that the total error is linear rather than exponential in number of steps T/∆t as in Theorem
1. Even though this theoretical result appears to be better, empirical evidence shows that the
original algorithm is more stable thanks to its use of ϑ.

5. Examples

To illustrate the ideas of Section 3 and to benchmark the described algorithm, we consider a
model where an explicit finite-dimensional solution is possible. Let


dXt = −κXt dt + σX(ρ dWt +

√
1 − ρ2 dUt);

dYt = (Xt − a) dt + σY dWt,
(40)

with (U,W) being two standard independent one-dimensional Brownian motions. Thus, Y is
a linear diffusion with a stochastic, zero-mean-reverting Gaussian drift X. We study the finite
horizon optimal stopping problem of the form

V(t, ξ, y) = sup
τ≤T
Et,ξ,y[e−rτg(Xτ,Yτ)] , sup

τ≤T
Et,ξ,y [

e−rτ(Yτ(c1 + Xτ) − c2)+

]
, ci ∈ R, (41)

which can be viewed as an exotic Call option on Y , see the first example in Section 1.1. Note that
the payoff is guaranteed to be non-negative even if the controller stops when Yτ(c1 + Xτ) < c2. In
this example, under the reference measure P̃, we have



dYt = σYdW t;

dXt = [−κXt − ρ(σX/σY ) · (Xt − a)] dt + ρσX dW t +

√
1 − ρ2σX dW⊥t ;

dρt(x) =
1
2
σ2

Xρ
′′
t (x) + κxρ′t(x) + κρt(x) + [

x − a
σ2

Y

− ρσX

σY
] dYt,
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where W⊥ is a P̃-Wiener process independent of W.
Below we carry out a numerical study with parameter values taken as

Parameter κ a σY σX T r ρ c1 c2

Value 2 0.05 0.1 0.3 1 0.1 0.6 1 2 .

Since on average Xt is around 0 < a, Y tends to decrease, so that in (41) it is optimal to stop early.
However, the drift process X is highly volatile and quite often Xt > a produces positive drift for
Y , in which case one should wait. Consequently, the stopping region will be highly sensitive to
the conditional distribution πt.

5.1. Kalman Filter Formulation
The model (40) also fits into the Kalman-Bucy [21] filter framework. Thus, if the initial

distribution X0 ∼ N(m0, P0) is a Gaussian density, then Xt |F Y
t ∼ N(mt, Pt) is conditionally

Gaussian, where


dmt = −κmt dt + (ρσX + Pt/σY ) dW t, dW t =
dYt − (mt − a) dt

σY
,

dPt = (−2κPt + σ2
X − (ρσX + Pt/σY )2) dt.

(42)

Note that the conditional variance Pt is deterministic and solves the Riccati ode on the second
line of (42). In (42), W is a P-Brownian motion, the so-called innovation process. Moreover, as
shown by [25, Section 12.1], F Y

t = F W,ξ0
t , so that we may equivalently write

dYt = (mt − a) dt + σYdW t.

The pair (mt, Pt) are sufficient statistics for the conditional distribution of Xt |F Y
t and the corre-

sponding payoff can be computed as

E[g(Xt,Yt)|F Y
t ] = E

[
(y(c1 + mt +

√
PtX) − c2)+

]
, where X ∼ N(0, 1)

=

∫ ∞

x∗

1√
2π

e−x2/2
{
((c1 + mt)y − c2) + y

√
Pt x

}
dx

=
y
√

Pt√
2π
· e−(x∗)2/2 + ((c1 + mt)y − c2) · (1 − Φ(x∗)) =: G(mt, Pt,Yt),

where x∗ =
c2−(c1+mt)y

y
√

Pt
, and Φ(x) is the standard normal cumulative distribution function. Thus,

the original problem is reduced to

V(t,m, p, y) = sup
τ≤T
E

[
e−rτG(mτ, Pτ,Yτ)

∣∣∣∣ m0 = m, P0 = p,Y0 = y
]
. (43)

This two-dimensional problem (recall that (Pt) is deterministic) can be solved numerically using
a pde solver applied to the corresponding version of the free boundary problem (22). Namely V
of (43) is characterized by the quasi-variational inequality



max
{
Vt + (m − a)Vy +

1
2
σ2

YVyy − κmVm +
1
2

(ρσX + Pt/σY )2Vmm

+ (ρσXσY + Pt)Vmy − rV, G(m, p, y) − V(t,m, p, y)
}

= 0,

V(T,m, p, y) = G(m, p, y).

(44)
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5.2. Numerical Results

To benchmark the proposed algorithm we proceed to compare two solutions of (41), namely
(i) a simulation algorithm of Section 3.3 and (ii) a finite-differences pde solver of (44). The
Monte Carlo implementation used N = 30 000 paths with n = 500, δ = 0.01, ∆t = 0.05 or twenty
time-steps. For basis functions we used the set {1, y, y2, ρt x, ρtg, ρtEUR}, where EUR(t, ξ, y) =

Ẽt,ξ,y[e−r(T−t)g(XT ,YT )] is the conditional expectation of terminal payoff. A straightforward code
written in Matlab with minimal optimization took about three minutes to run on a desktop PC.
The pde solver utilized a basic explicit scheme and used a 400×400 grid with 8000 timesteps. In
order to allow a fair comparison, the pde solver also allowed only T/∆t = 20 exercise opportuni-
ties by enforcing the barrier condition V(t,m, p, y) ≥ G(m, p, y) only for t = m∆t, m = 0, 1, . . . 20.
In financial lingo, we thus studied the Bermudan variant of (41) with ∆t = 0.05.

The obtained results are summarized in Table 1 for a variety of initial conditions (ξ0,Y0).
Using the pde solver as a proxy for the true answer, we find that our algorithm was generally
within 2% of the correct value which is acceptable performance. Interestingly, our algorithm
performed worst for “in-the-money” options (such as when Y0 = 1.8, X0 ∼ N(0.2, 0.052)), i.e.
when it is optimal to stop early. As expected, our method produced an underestimate of true V
since the computed stopping rule is necessarily sub-optimal. We found that the distribution of
the computed τ∗ was quite uniform on {∆t, 2∆t, . . . , (M−1)∆t} showing that this was a nontrivial
stopping problem. For comparison, Table 1 also lists the European option price assuming that
early exercise is no longer possible. This column shows that our algorithm captured about 85-
90% of the time value of money, i.e. the extra benefit due to early stopping.

To further illustrate the structure of the solution, Figure 1 compares the optimal stopping
regions computed by each algorithm at a fixed time point t = 0.5. Note that since the value
function V is typically not very sensitive to the choice of a stopping rule, direct comparison
of optimal stopping regions is more relevant (and more important for a practicing controller).
As we can see, an excellent fit is obtained through our non-parametric method. Figure 1 also
reveals that both {qt > Gt} ∩ {q̂t ≤ Gt} and {qt ≤ Gt} ∩ {q̂t > Gt} are non-empty (in other words,
sometimes our algorithm stops too early; sometimes it stops too late). Recall that the simulation
solver works under P̃ and therefore the empirical distribution of Yt in Figure 1 is different from
the actual realizations under P that would be observed by the controller.

While the pde formulation (42)-(44) is certainly better for the basic example above, it is
crucially limited in its applicability. For instance, (42) assumes Gaussian initial condition; any
other ξ0 renders it invalid. Similarly, perturbations to the dynamics (40) will at the very least
require re-derivation of (42)-(44), or more typically lead to the case where no finite-dimensional
sufficient statistics of Xt |F Y

t exist. In stark contrast to such difficulties, the particle filter algo-
rithm can be used without any modifications for any ξ0, and would need only minor adjust-
ments to accommodate a different version of (40). A simple illustration is shown in the last
two rows of Table 1 where we consider a uniform and a discrete initial distribution, respectively.
Heuristically, for a given mean and variance, V should be increasing with respect to the kurto-
sis of ξ0, as a more spread-out initial distribution of Xt leads to more optionality. Indeed, as
confirmed by Table 1, V(0, ξ1, y0) < V(0, ξ2, y0) < V(0, ξ3, y0), where ξ1 = N(0, 0.052), ξ2 =

Uni f [−0.05
√

3, 0.05
√

3], ξ3 = 0.5(δ−0.05 + δ0.05) are three initial distributions of X normalized
to

∫
R xξi(dx) = 0,

∫
R x2ξi(dx) = 0.052.
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Figure 1: Comparison of optimal stopping regions for the pde and Monte Carlo solvers. The solid line shows the
optimal stopping boundary as a function of mt; the color-coded points show the values zn

j (t), j = 1, . . . ,N projected onto
E[Xt |F Y

t ] = (ρt x) · (ρt1)−1. Here X0 ∼ N(0, 0.052), Y0 = 2, N = 30 000 and t = 0.5.

ξ0 y0 Simulation solver pde solver European option
N(0, 0.052) 2 0.1810 0.1853 0.1331
N(−0.12, 0.052) 2.24 0.2566 0.2661 0.2136
N(0.2, 0.052) 1.8 0.1862 0.1904 0.1052
N(0, 0.12) 2 0.1852 0.1919 0.1349

δ0 2 0.1723 0.1832 0.1325
Uni f[−0.05

√
3,0.05

√
3] 2 0.1827 −− 0.1347

0.5(δ−0.05 + δ0.05) 2 0.1853 −− 0.1332

Table 1: Comparison of the Monte Carlo scheme of Section 3.3 versus the Bermudan pde solver for the stochastic drift
example of Section 5. Standard error of the Monte Carlo solver was about 0.001.
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6. American Option Pricing under Stochastic Volatility

Our method can also be applied to stochastic volatility models. Such asset pricing models
are widely used in financial mathematics to represent stock dynamics and assume that the lo-
cal volatility of the underlying stock is itself stochastic. While under continuous observations
the local volatility is perfectly known through the quadratic variation process, under discrete
observations this leads to a partially observed model similar to (3).

To be concrete, let Yt represent the log-price of a stock at time t under the given (pricing)
measure P, and let Xt be the instantaneous volatility of Y at time t. We postulate that (X,Y)
satisfy the following system of sde’s (known as the Stein-Stein model),



dYt = (r − 1
2

X2
t ) dt + Xt dUt,

dXt = κ(σ̄ − Xt) dt + ρα dUt +

√
1 − ρ2α dWt.

(45)

The stock price Y is only observed at the discrete time instances T̃ = {∆t, 2∆t, . . .} with F̃ Y
t =

σ(Y0,Y∆t, . . . , Ybt/∆tc∆t). The American (Put) option pricing problem consists in finding the opti-
mal F̃ Y -adapted and T̃ -valued stopping time τ for

sup
τ∈T̃
E[e−rτ(K − eYτ )+]. (46)

A variant of (45)-(46) was recently studied by Sellami et al. [36]. More precisely, [36]
considered the American option pricing model in a simplified discrete setting where (Xt) of the
Stein-Stein model (45) was replaced with a corresponding 3-state Markov chain approximation.
In a related vein, Viens et al. [41] considered the filtering and portfolio optimization problem
where the second line of (45) was replaced with the Heston model

d(X2
t ) = κ(σ̄ − X2

t ) dt + ραXtdUt +

√
1 − ρ2αXtdWt. (47)

In general, the problem of estimation of Xt is well-known, see e.g. [10, 14, 39]. Observe
that while (45) is linear, the square-root dynamics in (47) are highly non-linear and no finite-
dimensional sufficient statistics exist for πt in the latter case.

In the presence of stochastic volatility, one may no longer use the reference probability mea-
sure P̃. Indeed, there is no way to obtain a Brownian motion from the observation process Y
whose increments are now tied with the values of the unobserved X. Accordingly, ζ is no longer
defined and consequently we cannot use it as an importance weight during the particle branching
step in (24).

A way out of this difficulty is provided by Del Moral et al. [12]. The idea is to propagate
particles independently of observations and to compute a candidate observation for each prop-
agated particle. The weights are then assigned by comparing the candidates with the actual
observation. Let φ be a smooth bounded function with

∫
R φ(x) dx = 1 and

∫
R |x|φ(x) dx < ∞ (e.g.

φ(x) = exp(−x2/2) · (2π)−1/2). The propagated particles and candidates are obtained by


vn
j (t) = vn

j (m∆t) +

∫ t

m∆t
κ(σ̄ − vn

j (s)) ds +

∫ t

m∆t
ρα dU( j)

s +

∫ t

m∆t

√
1 − ρ2α dW ( j)

s ,

Y ( j)(t) =

∫ t

m∆t
(r − 1

2
(vn

j (s))2) ds +

∫ t

m∆t
vn

j (s) dU( j)
s , m∆t ≤ t ≤ (m + 1)∆t,
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where (U( j),W ( j))n
j=1 are n independent copies of bivariate Wiener processes. The branching

weights are then given by

ān
j ((m + 1)∆t) = n1/3φ

(
n1/3(Y ( j)

(m+1)∆t − Y(m+1)∆t)
)
. (48)

Hence, particles whose candidates Y ( j)
(m+1)∆t are close to the true observed Y(m+1)∆t get high weights,

while those particles that produced poor candidates are likely to be killed off. The rest of the al-
gorithm remains the same as in Section 3.1. As shown in [12, Theorem 5.1], the resulting filter
satisfies for any bounded payoff function f ∈ C0

b(Rd)

E[|πn
t f − πt f |] ≤ C(t)

n1/3 ‖ f ‖0,∞, with C(t) = O(et). (49)

Note that compared to (28), the error in (49) as a function of number of particles n is worse. This
is due to the higher re-sampling variance produced by the additional randomness in Y ( j)’s.

6.1. Numerical Example
Recently [36] considered the above model (45) with the parameter values

Parameter Y0 X0 K κ σ̄ α T r ρ

Value 110 0.15 100 1 0.15 0.1 1 0.05 0 .

Plugging-in the above parameters and using the modification (48), we implemented our al-
gorithm with N = 30, 000, n = 1000. Since no other solver of (46) is available, as in [36] we
compare the Monte Carlo solver of the partially-observed problem to a pde solver for the fully
observed case (in which case the Bermudan option price is easily computed using the quasi-
variational formulation based directly on (45)). Table 2 shows the results as we vary the ob-
servation frequency ∆t. Since ∆t is also the frequency of the stopping decisions, smaller ∆t
increases both the partially and fully observed value functions. Moreover, as ∆t gets smaller, the
information set becomes richer and the handicap of partial information vanishes.

In this example where the payoff K − exp(Yt) is a function of the observable Y only, our
algorithm obtains excellent performance. Also, we see that partial information has apparently
only a mild effect on potential earnings (difference of less than 1.5% even if Y is observed just
five times). To give an idea of the corresponding time value of money, the European option
price in this example was 1.570. Comparison with the results obtained in [36] (first two columns
of Table 2) is complicated because the latter paper immediately discretizes X and constructs a
three-state Markov chain (X̃t). This discrete version takes on the values X̃m∆t ∈ {0.1, 0.15, 0.2}
and therefore does not exhibit the asymmetric behavior of very small Xt-realizations that dampen
the volatility of Y and drastically reduce Put profits. In contrast, our algorithm operates on the
original continuous-state formulation in (45). Consequently, as can be seen in Table 2, the full
observation prices of the two models are quite different.

7. Conclusion

In this paper we have presented a new numerical scheme to solve partially observable optimal
stopping problems. Our method is entirely simulation-based and only requires the ability to
simulate the state processes. Consequently, we believe it is more robust than other proposals in
the existing literature.
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Discrete Model Continuous Model
∆t Full Obs. Partial Obs. Full Obs. Partial Obs.
0.2 1.575 0.988 1.665 1.646
0.1 1.726 1.306 1.686 1.673

0.05 1.912 1.596 1.696 1.685

Table 2: Comparison of discrete and continuous models for (45) under full and partial observations. The first two columns
are reproduced from [36, Table 3].

While our analysis was stated in the most simple setting of multi-dimensional diffusions, it
can be considerably extended. First, as explained in Section 6, our algorithm can be easily ad-
justed to take into account discrete observations which is often the more realistic setup. Second,
the assumption of diffusion state processes is not necessary from a numerical point of view; one
may consider other cases such as models with jumps, or even discrete-time formulations given
in terms of general transition semigroups. For an example using a particle filter to filter a stable
Lévy process X, see [22]. Third, one may straightforwardly incorporate state constraints on the
unobserved factor X. For instance, some applications imply that Xt ≥ 0 is an extra constraint on
top of (1) (in other words the observable filtration is generated by Y and 1{Xt≥0}). Such a restric-
tion can be added by assigning zero weights to particles that violate state constraints so that they
are not propagated during the next branching step. Finally, if one uses the modification (48) from
[12] then many other noise formulations can be chosen beyond (2).
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[17] F. Gozzi, E. Rouy, and A. Świȩch. Second order Hamilton-Jacobi equations in Hilbert spaces and stochastic
boundary control. SIAM J. Control Optim., 38(2):400–430 (electronic), 2000.

[18] K. Ito and K. Xiong. Gaussian filters for nonlinear filtering problems. IEEE Trans. Automat. Control, 45(5):910–
927, 2000.

[19] U. Jensen and G.-H. Hsu. Optimal stopping by means of point process observations with applications in reliability.
Mathematics of Operations Research, 18(3):645–657, 1993.

[20] G. Kallianpur. Stochastic filtering theory, volume 13 of Applications of Mathematics. Springer-Verlag, New York,
1980.

[21] R. Kalman and R. Bucy. New results in linear filtering and prediction theory. Journal of Basic Engineering,
83D:95–108, 1961.

[22] M. A. Kouritzin and W. Sun. Rates for branching particle approximations of continuous-discrete filters. Ann. Appl.
Probab., 15(4):2739–2772, 2005.

[23] H. J. Kushner and A. S. Budhiraja. A nonlinear filtering algorithm based on an approximation of the conditional
distribution. IEEE Trans. Automat. Control, 45(3):580–585, 2000.

[24] F. Le Gland and N. Oudjane. Stability and uniform approximation of nonlinear filters using the Hilbert metric and
application to particle filters. Ann. Appl. Probab., 14(1):144–187, 2004.

[25] R. S. Liptser and A. N. Shiryaev. Statistics of random processes. II, volume 6 of Applications of Mathematics (New
York). Springer-Verlag, Berlin, expanded edition, 2001.

[26] F. Longstaff and E. Schwartz. Valuing American options by simulations: a simple least squares approach. Rev.
Finan. Studies, 14:113–148, 2001.

[27] S. Lototsky, R. Mikulevicius, and B. L. Rozovskii. Nonlinear filtering revisited: a spectral approach. SIAM J.
Control Optim., 35(2):435–461, 1997.

[28] S. V. Lototsky. Wiener chaos and nonlinear filtering. Appl. Math. Optim., 54(3):265–291, 2006.
[29] G. Mazziotto. Approximations of the optimal stopping problem in partial observation. J. Appl. Probab., 23(2):341–

354, 1986.
[30] G. Mazziotto, Ł. Stettner, J. Szpirglas, and J. Zabczyk. On impulse control with partial observation. SIAM J.

Control Optim., 26(4):964–984, 1988.
[31] J. Miao and N. Wang. Experimentation under uninsurable idiosyncratic risk: An application to entrepreneurial

survival,. Technical report.
[32] R. Mikulevicius and B. L. Rozovskii. Fourier-Hermite expansions for nonlinear filtering. Teor. Veroyatnost. i

Primenen., 44(3):675–680, 1999.
[33] G. Moscarini and L. Smith. The optimal level of experimentation. Econometrica, 69(6):1629–1644, 2001.
[34] P. Muller, B. Sanso, and M. De Iorio. Optimal Bayesian design by inhomogeneous Markov chain simulation.

Journal of the American Statistical Association, 99:788–798, 2004.
[35] G. Pagès and H. Pham. Optimal quantization methods for nonlinear filtering with discrete-time observations.

Bernoulli, 11(5):893–932, 2005.
[36] H. Pham, W. Runggaldier, and A. Sellami. Approximation by quantization of the filter process and applications to

optimal stopping problems under partial observation. Monte Carlo Methods Appl., 11(1):57–81, 2005.
[37] E. Schwartz. The stochastic behavior of commodity prices: Implications for valuation and hedging. Journal of

Finance, LII(3):922–973, 1997.
[38] A. N. Shiryaev. Optimal stopping rules. Springer-Verlag, Berlin, 1978.
[39] J. R. Stroud, N. G. Polson, and P. Müller. Practical filtering for stochastic volatility models. In State space and

unobserved component models, pages 236–247. Cambridge Univ. Press, Cambridge, 2004.
[40] J. N. Tsitsiklis and B. Van Roy. Optimal stopping of Markov processes: Hilbert space theory, approximation

algorithms, and an application to pricing high-dimensional financial derivatives. IEEE Trans. Automat. Control,
44(10):1840–1851, 1999.

[41] F. Viens, R. Desai, and T. Lele. A Monte-Carlo method for portfolio optimization under partially observed stochas-
tic volatility. In IEEE International Conference on Computational Intelligence for Financial Engineering, 2003,
pages 257–263, 2003.

26


