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1. INTRODUCTION

Optimizing operation of industrial assets is one of the key problems studied by management science. The
manager in charge has control over the operating modes and attempts to maximize expected profit which
is tied to a stochastic state varialMe Thus, she holds a sequence of timing “real options” on the possible
revenues. A common example is a commodity production assetitpresenting the current commodity
price. In this case, the manager has a series of start-up/shut-down options on production. Suppose that the
manager can adjust the production regime evstyime-units and has a choice dfpossible regimes with
associated cashflows (¢,Y;),7 = 0,...,I — 1. The classical theory (Dixit and Pindyck 1994, Eydeland
and Wolyniec 2003) then implies that the value of the above flexibility on a time holiz@h, 7' = M At
is given by

M
(L.1) V(y) = B2 | S maxe ™, (n AL, Viag) - Al ‘ Yo =y

m=1

)

whereQ is the risk-neutral pricing measure for th®; }-market. Thus, computing the associated value is
reduced to pricing a series of chooser Call option§orit has been long recognized that (1.1) will in fact
overestimatehe production value due to two crucial phenomena ignored by the classical theory:
(a) The manager faces operational constraints that limit her flexibility;
(b) The asset cannot be perfectly hedged, negating the replication premise underlying risk-neutral valua-
tion. Moreover, the manager is risk-averse and will choose strategies that reduce risk.

Property (a) implies that instead of the sequential Call options of (1.1) one must consider exotic, and
particularly path-dependentptions held by the manager. In fact, for a full account of the constraints, one
must work with an entire operational (impulse) contfok= (&;)o<:<7 Which represents the dynamic se-
guence of managerial decisions. After the early seminal paper of Brennan and Schwartz (1985), these issues
have been addressed by several papers under the ruloptiofal switching The pde-based approach of
guasi-variational inequalities has been considered in Brekke and @ksendal (1998) and studied more thor-
oughly by Zervos (2003). A probabilistic method was first taken up by Yushkevich (2001) in discrete time;
continuous-time versions were then analyzed by Hamadand Jeanblanc (2007) in the framework of back-
ward stochastic differential equations (BSDEs) and by Carmona and Ludkovski (2005) and Dayanik and
Egami (2004) using Snell envelope techniques.

Property (b) arises due to fragmentation of commodity markets as a result of geographical and physical
characteristics of the products. Consequently, the manager foesssariskbetween the actual commodity
produced and the standardized traded contract used for hedging. Thus, the problem must be represented
in terms of optimal investment in an incomplete market with (controlled) stochastic income. The risk-
preferences of the manager are also important. For instance, poor performance might result in a manage-
ment re-shuffle and/or worker lay-offs, measures that are undesirable and correspond to a large negative
externality. Alternatively, a streak of losses could lead to a credit crisis and rating downgrade of the firm. As
a result, the management is likely to place extra emphasis on avoiding bad outcomes and will eschew exces-
sively risky decisions. A natural way of incorporating manager preferences is to apply utility-valuation via
an indifference pricing mechanism. The problem of utility maximization wikbgenoustochastic income
has been analyzed in El Karoui and Jeanblanc (1998), Henderson (2005) and with a consumption control
in Miao and Wang (2007). An extension beyond expected utility has been recently considerégpelKI
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and Schweizer (2007). The related problem of indifference pricing of (European) random endowments has
also been extensively studied, see e.g. Henderson (2002), Musiela and Zariphopoulou (2004), Stoikov and
Zariphopoulou (2005), llhan et al. (2006). The common feature of all these papers is an introduction of a
nonlinearity to account for the manager’s risk aversion.

1.1. Combined Formulation. In this paper, we merge the two aforementioned strands of literature to ex-
tend (1.1) in a way that explicitly incorporates operational constraints, imperfect hedging possibilities and
risk-preferences of the manager. Thus, we inject risk-preferences into an optimal switching model, or con-
versely add arendogenouslgontrolled stochastic income to the problem of utility maximization. While
traditionally the operational and financial arms of the firm have been valued separately, to extract maximum
benefits a “holistic” global approach is needed. This is achieved by a combined stochastic control framework
which provides a coherent way of analyzing the joint behavior of the manager. The use of a fully dynamic
setting properly reflects operational constraints while correctly pricing traded/non-traded risks. Our model
is robust and can incorporate many practical extensions; moreover it is computationally tractable, which
allows us to give several numerical illustrations. In particular, we use the examples to highlight the interplay
between the financial and operational components and to study the role of various constraints.

While this project was completed we became aware of a parallel independent work by Porchet et al.
(2007). They consider a very similar financial setting, but frame their model in the context of backward
stochastic differential equations. We give a detailed comparison of the two approaches in Remark 4.

1.2. Case Study. Before proceeding, let us discuss a case-study that will be used as motivation for further
analysis. Consider an oil producer that operates several deep sea oil platforms, extracts oil of specific grade
‘Y’ and sells it on the market. The company management wishes to maximize risk-adjusted profit on some
planning horizon ofl" years (e.g. for an annual plan). The profit depends on the amount of oil extracted, i.e.
the operating policy, as well as on the contemporaneous price of oil, which is random and unpredictable.

To achieve its goals the firm has access to two channels. First, the company controls its own production

regime. Thus, when oil prices are lower than extraction costs, the manager has the option to shut down
production to minimize losses. Conversely, when commodity prices are high, the company can take full
advantage by running all platforms at maximal capacity. This operational flexibility is limited by various
engineeringconstraints:

e Changing the production mode is costly: one must dispatch workers to start/stop the platforms and
coordinate with the nearby oil pipelines;

e Changing the production mode takes time: the above dispatch takes several days until oil is flowing at
the full rated capacity;

e The firm may have market power. While the firm is a negligible player in the global oil market, there
are hundreds of specific oil grades and the firm is likely to be a major producer of grade ‘Y’. Thus, if
grade 'Y’ is thinly traded, increasing the firm’s production will tend to depress local prices.

Second, the firm has access to the oil futures markets where tezhgeits revenues. Financial trading

can mitigate the risk associated with uncertain future prices, but also brings risks of its own. In North
America the only liquidly traded oil contract is the New York Mercantile Exchange (Nymex) futures based
on the West Texas Intermediate (WTI) oil grade. However, less thahof all oil produced in US is of

WTI grade, and in particular the firm under consideration produces oil of grade ‘Y’. While the WTl and ‘Y’
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prices are likely to be highly correlated, hedging is still imperfect and any trading strategy exposes the firm
to the residual basis risk.

Given this setting, the manager wishes to find an optimal production polesyd an optimal financial
trading policyr that would maximize her expected risk-adjusted income over the planning h¢oizbh
Moreover, she is interested in understanding the components of this value, namely the relative costs of con-
straints, the benefit of each flexibility and the respective synergies in case of potential strategic opportunities.

The resulting model is also applicable to many other economic setting beyond commodity production. Let
us mention here management of industrial plants that have fluctuating input costs, labor force administration
(with the stochastic factor representing demand), and multi-stage capacity expansion budgeting.

The rest of the paper is organized as follows. Section 2 rigorously constructs the associated control
problem; Section 3 then characterizes the structure of the optimal strategy and gives an iterative expression
for the indifference value of operational flexibility. Section 4 provides a complete numerical implementation
using a simulation approach, which is then used to present two illustrative examples in Section 5. Besides
numerical evidence, comparative statics are also analyzed. Finally, Section 6 summarizes our results and
discusses further extensions. Most of the technical proofs are delegated to the Appendix.

2. MATHEMATICAL FRAMEWORK

Let Y; and S; denote the prices at timeof the local and reference contracts respectively. Thus in the
oil company exampleY; is the price of the produced grade ‘Y’ oil, whil§, is the price of reference
WTI futures. We assume th4t;} and{S;} are one-dimensional and thg$,} satisfies an @ stochastic
differential equation (SDE) of the form

(2.1) dS; = u(t)Sy dt + o(t)S; AW},

whereW! is a standard one-dimensional Brownian motion on a stochastic fasi& P), and i, o are
bounded deterministic functions satisfying-) > ¢, > 0. Thus,{S;} is a time-inhomogeneous geo-
metric Brownian motion. Due to strong seasonality of commodity markets we will explicitly show time-
dependence of parameters throughout the paper. Precise dynamjies; ofill be specified later on in
(2.3).

Besides producing oil priced &; and having access to tH&; }-market, the company also maintains a
risk-free bank account that earns interest at rat timet. For clarity of presentation we take = r to be
a fixed constant. The extension to deterministic time-varying interest rates is straightforward.

2.1. Operational Characteristics. The procesgY;} is used to define the income flow for each operating
regime of the asset. We postulate that there are a totaldifferent operating regimes that we label for
convenience a&; = {0,1,--- ,I — 1}. The ordering might indicate the production level (e.g. “offline”,
“50% capacity”, “maximum capacity”, etc.), but in general is completely symbolic. For each operating
regime: € Zrp, there is a corresponding (possibly negative) income flow at instantaneousitatg )d¢. In

the case of the oil producey; (t, ;) represents the nominal value of the oil sold, subject to the assumption

that every barrel extracted is immediately sold at prevailing market price. We impose the following

Assumption 1. For eachi € Zy, the payoff rate); : [0, 7] xR} — Ris uniformly boundedy;(t,v)| < Cy
for some constar@,. In addition,; is continuous and has a continuous derivativee C/ ([0, T] x R).
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Remarkl. Assumption 1 is strictly speaking violated for most practical cases which typically involve in-
come flowsy); that arelinear in the commodity priceY;. However, one could always boung while
ensuring that the economic accuracy of the model is not affected, see e.g. a similar Remark 1.2 in llhan
et al. (2006). Bounded income rates guarantee that operational profits are always finite; this is certainly
economically plausible.

An operational strategy is a double sequendey, ),k = 0,1,2,..., with & € Z; representing the
sequence of chosen production regimes @il 7y < 7; < --- < T representing the times of operating
regime changes (from now on termeditching times The entire strategy is then the right-continuous
E:[0,T) x Q— Zywith & = & if 7, <t < 141 OF

(22) Et = Z Sk : H[Tk,Tk+1)(t)'

m,<T
To match the continuous-time nature of the rest of the model, we have assumed that changes in operating
regimes can be carried out at any point in time. A discrete-time version that matches the classical formulation
in (1.1) will be discussed in Section 3.5.
Once a strategy is selected, the resulting operation has three effects:
(a) Nominal revenue at ratg, (t,Y;) dt is generated at timg
(b) Discrete costs are incurred at times of regime switches. We label th&sg as C; ;(t,Y;), for the
expense associated with changing the production from regtmesgimej;
(c) ¢ affects the dynamics of the local pri¢&; }, which follows an SDE of the form

(2.3) dY; = a(Ys, &) dt + b(Ys, &) - (pdW} + /1 — p2 dW7).

With respect to the switching costs ; we make the standing

Assumption 2. Foreveryi € Z;, C; ; = 0andC; ; > 0,Vj # i. Also, foralli, j,k € Z; C;, < C; ; +Cj i
and for anyi, ji1, j2, ..., jn € Z1, Cij, + Cj, jo + ... +Cj,5 > ec > 0.

SinceC; ;s satisfy the triangle inequality, multiple simultaneous switches are ex ante suboptimal. The
last item in the assumption means that switching costs are strictly positive over any “cycle” of decisions.
The presence of switching costs implies that the initial regfgmaffects future strategies and introduces
path-dependency into the operational optimization problem.

Regarding the dynamics of local prices in (2.3), the driving prod&$sis another one-dimensional
Brownian motion, independent & ! driving (2.1), and-1 < p < 1 is the correlation parameter. Typically
p is close to+1, indicating a high degree of positive dependence between the market futures contract and
the local 'Y’ commodity. We also postulate that

Assumption 3. For all i € Z;, the coefficients(y,i) and b(y, i) are bounded and uniformly Lipschitz
continuous and the volatility(y, i) > ¢, > 0 is non-degenerate.

The effect ot on{Y;} models the market power potentially exercised by the manager due to the fundamen-
tal laws of supply and demand. For instance, it can represent the condition that when production increases,
the supply of the output commodity grows, which in turn tends to drive prices down (or conversely the de-
mand of the input commaodity shrinks and prices increase). Due to random price fluctuations, this effect is
not deterministic, but is instead incorporated into the price dynamics (deterministic effects can be included
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directly in4;). When we wish to emphasize this dependencgpf on&, we will occasionally Write{Yf},
and{Y;} for & =i € Z;. We denote byF;, = o((Y;): 0 < s < t) the filtration generated b§y;} and by
Fi = 0((Ss,Ys): 0 < s < t) the joint filtration of{ S, } and{Y;}.

Not all controls are acceptable. First, sircehould be based on current production conditionsare
required to beF-stopping times. For &-stopping timeo let S(o) = {F-stoppingtimer: ¢ < 7 < T}
(with S = §(0)) be the set of all stopping times betweemnd T. Then we need, . ; € S(7). Also, the
production decisions must be done on the basis of information at switch timg, &eD (7, {x—1) where

D(7h, Ep—1) = {d: Q — Zy, Fr, — measurablel(w) # &—1(w)},

denotes the set of d@ll;-valued, 7, -measurable random variables that are a.s. different fiom (in order

to be able to calty truly a switching time). Second, the manager is not allowed to make “too many” changes.
Formally, an acceptableshould be finite in the sense ti@ft, < 7" Vk] = 0. Because potential operational
profits are finite while switching costs are strictly positive, a strategy with an infinite number of switches is
sub-optimal anyway. For any stopping timgwe designate by

(2.4) U(r,T) = {¢: F-adaptedZ;-valued right continuous processBfa.s. finite variation ofir, 7'} ,

the set of all admissible operational strategies betweand7. Assumption 3 implies that (2.3) has a
unique strong solution oft, 7] for each¢ € U(t, T') and any initial conditiory; = y.

Remark2. As mentioned in the introduction, management may be subjeopérational inertia after
changing into a new regimeone must wait some amoub} before being allowed to switch the regime
again. For instance, an oil platform has ramp-up/ramp-down periods for the pumps during which no new
action is possible. Thus, & = ¢ then we may also require,,; > 7 + J;. The delay lengths; > 0

are additional constraints and prevent the manager from immediately reversing a decision. To ease on
presentation we do not incorporate operational inertia at this stage, but will further explore this issue in
Section 5.5.

Summarizing, employing a strategyc U(71,T) on a time interva[Ty, T»] yields at date/» a nominal
cumulative revenue of

T
(2.5) Brymy(€) / STy (5, Vo) ds — Y PG, .

Ty E>1: 1 1<Th

For the strategy, = i always using regimé, we will write Br, 1, (i) £ fT? e"(T2=5)yi(s,Y,) ds. Also for
later use we note that for the first switching timeof a control¢ with {7, = i we have:

71 T2
Bry 1, (&) = / eT(T2is)w§s(87YS) ds — er(TziTl)Ciyﬁl +/ eT(T2*S)¢£S (s,Ys)ds — Z eT(TZ?Tk)CEk—hﬁk

Ty m k>2
Te—1<1%

(2.6)
= er(T27Tl)(BT1,T1 (Z) - Ci,&) + BTLTQ (5)
2.2. Financial Hedging Strategies.In contrast to operational policigswhich are essentially discrete, a

financial trading strategy is a continuous control. Let; denote the dollar amount of contrast held at
timet, with the remainder invested in the savings account X adenote the current wealth in the possession
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of the firm at timet. Given an initial endowment of, the outcome of any combined strategy, ¢) is a
wealth proceséX, = X"™),-, which obeysX/*™* = z and

(2.7) dXLem™s = nudsﬂ

u

g (XEPE — ) du+ e, (u, Vo) du = > Cey g, Tr—u.
k>1

Because% = u(t)dt + o(t)dW}, the traded futures pricé; drops out from (2.7) and is omitted from
future analysis.

Let M® £ {Q < P: E9[In 99] < oo, {e™"S,} is aQ-martingalg # 0 be the non-empty set of all
martingale measures with finite relative entropy. To exclude arbitrage and make sure that (2.7) is well-
defined we require

(2.8) m€ A(t,T) = {(ws = (s, Ss, X5, Ys))t<s<t : / Ty dss is aQ-supermartingalgQ < MS}.

t s
The motivation for the above choice is to have additivity of the admissible financial hedging policy sets
A(t, s): for any F-stopping timer, if 7). 72 € A(t,T) then so islyc, 7\ + Lo 72 € A(t, T).
Observe that for this to occud (¢, T) must be independent of initial wealthand the operational strategy
&. This is one reason why wealth/trading constraints are difficult to incorporate in our framework and why
we do not impose the usual constraint of no-bankrupéy-™¢ > 0 (in which case the choice of production
strategy¢ would influence admissibility of).

2.3. Optimization Problem. We are finally ready to define the optimization problem. Let
U(w) = —exp(—yw),  v>0.

This is the well-known exponential utility with Constant Absolute Risk Aversion (CARA) parameter

({]/,/((5)). It has been widely used in portfolio optimization literature, see e.g. Carmona and Danilova (2003),

Henderson (2005), llhan et al. (2006), Miao and Wang (2007), Musiela and Zariphopoulou (2004), Stoikov

and Zariphopoulou (2005), Zariphopoulou (2001). Further reasons for choosing exponential utility in our

model are discussed in Section 3.3. The manager’s control problem is to maximize the expected future utility

of terminal wealthl”: [0,7] x Ry x R x Z; — R, over all admissible operating and hedging strategies,

(2.9) V(t,y,,0) = sup Byuy, [UXE)],
TeA(t,T)
EeU(t,T)

whereE, , ,i[] £ E[-|Y; = y, X; = 2, = i] denotes conditional expectation under the physical measure

P given the state variables at timeProblem (2.9) assumes for simplicity that the terminal salvage value is
zero; a general residual value of the fo€iiY) can be easily added. It is well-known that because opera-
tional gains are uniformly bounded, for everye A(t, T) the family {exp(—vX5"™%)} s is uniformly
integrable and therefore the solution of (2.9) is well-defined and finite. Note that for exponential utility, one
may equivalently work with the smaller set of admissible strategies,

H(t, T) = {(m,&): (XL*™¢) is uniformly bounded from below (ig, w)}.
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2.4. Indifference Value of Operational Flexibility. Let

(2.10) U0(t,z) 2 sup E[UXE"T)],

TEA(t,T)
denote the value function when the business is not present and the company only engages in financial trading.
In this case the evolution of the wealth process is simply

u d s u
(2.11) Xbam — g +/ Fssi +/ re(XE"™ — 1) ds,
t s t

and we have a standard Merton problem of portfolio optimization. The value of having control of the
business offt, T'] is p = p; r(y, z, i), where thandifference valug satisfies

(2.12) V(t,y,z,i) = U(t,z + p).

In other wordsp; r(y, x, i) denotes the initial increase in wealth that balances out relinquishing operational
control subject to the given initial conditions. Hence, the agent is indifferent between reggiviag x, i)
dollars immediately or being granted management privileges Tintil

Remark3. Conversely, assuming the point of view of a firm preparing to start financial hedging, we can also
assign an indifference value for having access to new financial markets. Namely, defining

(2.13) f/(t, y,z,1) = sup Ky [U(xer(T—t) JrBt’T(é))] _ o0

sup By, |:7e_'7Bt,T(£):|
ceU(t,T)

€CU(t,T)

to be the expected profit from just managerial control, the value of financial hedging is the ginsunt

pe,7(y, x, i) that solves/ (¢, y, z,i) =: V(t,y,x + p,). We studyp in Section 3.4.

3. METHOD OF SOLUTION

The double optimization in (2.9) and the presence of four state factors should testify to the complexity
of our problem. Note that the model is also non-time-homogeneous. This is a key feature of practical
applications, not only because of the finite planning horiZgrbut also due to inherent seasonality in
commodity markets. Nevertheless, thanks to the special structure it is possible to separate the financial
hedging and operational management problems and obtain an efficient solution algorithm.

The key simplification occurs because the manager’s preferences are over terminal wealth and interme-
diate income does not affect availability of trading strategies. As a result the problem can be reduced to one
where the entire cumulative revenBe (&) of (2.5) is received &l'. Indeed, one can re-write (2.7) as

2 T ds, T
X; T = ey +/ er(Tiu)Tru < S Tudu> +/ er (=) (wﬁu (u,Yy) — chk—lvgk ]lTkZU) du

¢ ¢ k>1

T
— (Tt / T, (A4S, /Sy — rudu) + By r(€)
t
(31) =X+ Bir(€),

with the X%%7 from (2.11).
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3.1. Separation Principle. Fixing £ and making use of (3.1) we see that (2.9) is related to the problem
of utility maximization with random endowment. In particular, we recall the following lemmas regarding
optimal investment in the incomplet§, Y') market due to Tehranchi (2004) and Owen Zitdovi¢ (2007).

Let

9 T $) — )2
(3.2) My 2! 2” /t (“(025)2) ds.

The quantityM; 7 is related to the Girsanov measure change fioto the minimal martingale measu@e

dQ _ [T pps) =) gy [ PPl =)
dp /0 o(s) aw /0 20(s)? ds.

The measur€) € M? is characterized by the property that it makes™S;} into a martingale while
unaffecting the law of¥/2. It also minimizes the relative entropy with respecftamong all measures in

M?. Thus, theQ-market price of risk associated ¥ is the familiar Sharpe ratiqu(t) — ) /o (t) and the
market price of risk associated Y62 is zero. It follows that unde®,

— r o 11
3:3) {dSt = Si(rdt + o(t) dW}),

4y, = (a(¥)) — pM05Tb(v) ) dt 4 b(¥;) - (pdW + /T~ 2 d1TR),

where(VT/l, I/T/Q) is a pair of independerf®-Brownian motions. For typographical convenience we will
denote the expectation under the meagdasE = EQ.

Let B be a boundedr-measurable random variable and consider the utility maximization problem for
random endowmenB, U(z; B) £ sup,c 40.7) E [— exp(—y(Xn"™ + B))] :

Lemma 1. Tehranchi (2004, Theorem 3.2) Suppgse< 1.

(@) Letp? = exp(—v(1 — p?)B — Myr). The functiorlU(-; B) is given by
(3.4) U(z: B) = — exp(—e'Tz) - E[pB] =
(b) An optimal strategy fot)(z; B), 7*(B) exists and is equal to

* 1 u(t) — 7 o pe (Tt By
B); = — E
7 (B)¢ v o(t)? + v(1 = p?)o(t) IE:[pB|.7'—t]7

where(;) is the integrand in thé€)-martingale representation of®,

T
PP =B+ [ A(pdil VT R AR2)
0

Lemma 2. Owen andZitkovic (2007, Theorem 4.1,5.1) Moreov@rsatisfies the following properties

(a) Dual optimality: the optimal wealth proces{:?(&x’“*} is aQ-martingale;

(b) Monotonicity: if B; < By P-almost surely thef(-; By) < U(+; Bs);

(c) Concavity: givem\ € [0, 1] and two claimsB;, Ba we haveU(-; AB; + (1 — \)B2) > AU(+; By) +
(1 =AU(; Ba);

(d) Lebesgue Continuity: ifB,,) are uniformly bounded an#&,, — B P-almost surely, thelJ(-; B,,) —
U(-; B).
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Lemma 1 can be used to obtain a solution to the financial trading aspect of (2.9), allowing us to focus on
the operational flexibility component. Indeed, toe S, let

Qg A 7(1 _ pQ)GT(T_J).

Proposition 1. Supposép| < 1. The value functio” satisfies

(3.5)

M r - o

V(t7 Y,x, Z) = €Xp <_76T(Tt)x - ’2> © sup {E |:_ eXp(—OéTBt7T(§))’ E =Y, ft = Z:| e } )

1=p*) ceuum

and the corresponding indifference value solves
. 1. = .
(3.6) pur(y.i) = sup —InE[exp(—arByr(§)| Vi = y.& = .
geu(t,T) At

The indifference value is independent from initial wealth le¥el= x, a pleasing fact that allows valuation
without worrying about the current cash position of the firm. The ¢alse 1 is considered in Section 3.4.

Proof. Fix ¢ € U(t,T) and denote by

VE(t,z,y,0) = sup Eyuy [UXE™)] = sup Euyy [— eXp(—v(X?“r + Bt,T(f)))} ,
meA(t,T) TeA(t,T)
using (3.1). Then from (2.5) and Assumptions 1}2; r(§)| < (T — t)eT(T—t)Cw is a Fp-measurable
bounded random variable and by Lemma 1,

1

| e M\ - 12
Vg(tax7y72) = €xp <_7e T t)'r - 1_15’;12) ’ E|:_ eXp(_aTBt,T<E))’ Y;f = y:ft = Z:| 1-o .

Hence,

V(t,y,z,i) = sup Vg(t,y,:z,i)

£€U(t,T)
r(T—t) M1 = . ﬁ
=exp | —ve T — ﬁ - sup E [— exp(—aTBt,T(g))‘Yt =y, & = z} .
—p £CU(t,T)
If there is no production the® = 0, and we obtaifl)®(t,z) = — exp(—ye" T Yz — iv%f;) in (2.10).

Comparing with (2.12), we find

1
— exp (*’Yer(T_t)pt,T(y, z)) = . iﬁfﬂ {I_E [— exp(—aTBt,T(g))‘Yt =y, & = z} 1—p2 } ’
E b

which after simplification leads to (3.6). O

3.2. Dynamic Programming Principle. Since¢ is an impulse control, one expects thatandp, which
respectively satisfy (3.5) and (3.6), satisfy a dynamic programming equation. In this section we rigorously
establish this fact which reduces to a series of optimal stopping problems and is then used in Section 4
for numerical computations. The results below resemble existing literature on impulse control, see e.g.
El Karoui (1981), Lepeltier and Marchal (1984), Dayanik and Egami (2004). However, because we have a
multiplicative- rather than the typical additive-cost structure some adjustments are needed, and we present
full proofs for completeness in the Appendix.
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To begin solving (3.6) we first consider a sequence of restricted control problems. For any stopping time
o € S, letU* (o, T) be the set of all production policies that use at mioswitches between andT":

U o, T) £ {6 = (0,0, 71, &1, 72,62, Tho &) 1 T € S(1im1), & € D(i,&i1), i =1, kY,
and define
(3.7) ¢°(0,Y,, 1)
(3.8) ¢"(0, Yy, 1)

(>

E [— exp(—arByr(i)| Fo ],

esssup B [—exp(—arBer(€))| Fo], k=1,2,....
g€k (o,T) Lo =i

lI>

The fact that the left hand sides are a functiofofollows from the (strong) Markov property ¢ }. Note
that at this point* (o, Yy, i) is defined separately for eaet{a more illuminating but cumbersome notation
would be¢(o;4)(Y,)), so a priori it is not at all clear what kind of regularity holds fa#*(-,Y.,4)}ses.
The next lemma shows that satisfy a recursion formula.

Lemma3. Forall k > 1,0 € S,¢ € Z; we have

(3.9) qbk(a, Yy,i) = ess sup E [exp(—aTl(Bgm (1) — Ci,&)) ~q§k_1(71, Yﬁ,&)’ .7:0} )
T1€S(0'),§1ED(T1,Z')

The following lemma proves the regularity ¢f and implies that (3.9) is a pure optimal stopping problem.

Lemma 4. For everyk = 0,1,... and: € Zj, there exists a continuous, boundé&eadapted measurable
processp¥, such thap* (o, Y,, i) = ¢, the process* evaluated at stopping time.

Thanks to Lemma 4, we may apply the general theory (El Karoui 1981) of optimal stopping to the Snell
envelope of (3.9). This implies that an optimal control exists and gives the following explicit characterization
of the solution:

Corollary 1. The supremum in the optimal stopping problgg®)for ¢* is achieved for
T = inf{s > o qbk(s,Ys,i) = max ((;Skfl(s,Ys,j) -exp(asCij))}s
(3.10) JeEnt}
& =min{j € Zr \ {i}: ¢"(r, Yr. i) = " (7, Yr, j) - exp(@sCig) )}
To relate the previous developments to our indifference values, we define the ogeratot ([0, 7] x
R4 X Zr) <= by

) -1 - .
(38.11) Guw(t,y,i) = sup — InE;,; {exp(—OzT1 {Btm (i) = Cig, +w(T1, Yﬁ,&)D].
T1ES(t),£1€D(11,3) o7

It is easy to check thdi is an increasing bounded operator, which is moreover continuous in the supremum
norm. We now iteratively sep”(t,y,i) £ —In(—¢°(t,y,i)) andp**1(t,y,i) £ GpF(t,y,i), k =
0,1,....

Lemma 5. We havep”(t,y,i) = — exp(—aup*(t,y,1)).

Comparing with (3.8) and (3.6) we see thét(t,y,4) is therefore equal to the indifference value of
production onlt, T'] under the constraint that at mdstnanagerial regime switches are possible. Note that
p¥(t,y, 1) is now defined in terms of the recursive optimal stopping problem (3.11), rather than an impulse
control problem of (3.8). In the next section we will take advantage of this fact to compute the unconstrained
indifference valuey; (v, 7).
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3.3. Iterative Property of p. In (3.11) we have constructed a series of optimal stopping problems for the
indifference value*(t, y, 1) of the restricted control problem corresponding to (3.8). We now show that in
the limit k& — oo this produces a solution to the original problem (3.6).

Proposition 2. The sequenc@”) is increasing and ag — oo converges pointwise @ of (3.6).
k:llngo pk (t7 Y, Z) = pt,T(ya Z)
Moreover, the indifference valyg r is a fixed point of the operat@: Gp. r(y,i) = prr(y, ), SO thatp 1
satisfies the dynamic programming equation
. —1 r(t—s i i
(312) pir(y,i)= sup —InEry, [exp( . / (T=0g(s, YE) ds = Cig, +pT,T<YT,51>})] .

TeS(t), % t
él E,D(Trl)

Finally, p; (-, %) is locally Lipschitz iny and uniformly bounded oft, y) € [0,7] x R..

The unusual property of the effective risk aversion parameter (1 — p2)eT(T_t) increasing as we
move backwards in time is to account for time-value of money. Since all cashflows are statadiival
terms, early on the manager is more risk-averse because opportunity costs are higher initially. For instance,
the relative cost of paying’; ; is higher for smalk when available capital can be invested profitably for a
long time. The above proposition immediately implies

Corollary 2. An optimal joint strategy¢*, 7*) for p, (y, ) exists and is explicitly given by = t,£; = ¢
and

Tpr1 = inf{s > 701 ps 7(Ys, &) =  max  (ps(Ys,j) — wa)}

JEZ\{&;}
(3.13) k1 = min {j € Zi\{&} oy, 0 (YVor, &) = oy o (Yer, ) — Cg;;,j} :
. b(Yy .
Ty = po(_(tt))ath,T(Y;ﬁagt)‘

Proof. The structure of optima* follows from the representation (3.12) and the corresponding coupled
optimal stopping problem. The optimal financial hedging strategy =¥ — #¥ is defined to be the dif-
ference between the optimaY of (3.5) and the optimat® of (2.10). The latter is known to be (Henderson
2005) the constar#“ e~ "(T-1) and the former is obtained by applying the second item of Lemma 1 to
(3.12). Thus, usmg the notatlon of Lemma 1,

mf = pe "I/ (y(1 — p?)o(1)) - Br/E[pPer )| 7.

By Assumption 3, the stochastic flow — Y¥(w) is a diffeomorphism (Jksendal 1998). Coupled with
the differentiability ofy;’s, this implies that for any fixed € U(¢,T), the mapy — E;;lexp(—y(1 —
p?)B:.r(€))] is locally Lipschitz. Finally, applying the Clark-Ocone formula gives the representatioh of
in terms of the (generalized) partial derivativeppfr, see e.g. a similar expression in Henderson (2005).

Thus, for the first optimal switching time, the current indifference value of managerial control is equal
to the exponential certainty equivalent of best immediate revigard:) plus the future indifference value
of remaining control ovefr, T']. An easy generalization of (3.12) shows that, moreover

. -1
pt,T(y7 Z) = sup — In Et R {GXF)( 0% (Bt,a (5) + pU,T(Yav 50)))} )
geu(tT) At
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foranyo € S(t). Consequentlyy; 7 is additivein time in the sense that there is a functiofasuch that

per = F(Bs + por). A similar observation was made in Carmona and Danilova (2003, Section 4) in
the context of indifference pricing of a portfolio of options with different expiration dates. This remarkable
property is the major reason for our selection of exponential utility. As shown by Cheridito and Kupper
(2006), it is the only such example in the framework of expected utility maximization with allowable neg-
ative wealth. Note that additivity is natural and allows the manager to carry out ‘local’ optimization when
choosing her production levels; this also trivially holds in (1.1). To numerically implement this algorithm
it remains to evaluate the coupled optimal stopping problems appearing in the construgtiorinfi) in
(3.12). This is taken up in Section 4.1 using ideas from American option pricing.

The overall structure of Corollary 2 is reminiscent of problems of optimal investment with discretionary
stopping (Karatzas and Wang 2000): the manager should optimally heddé&;eéncome in the{S,}-
market and then at her discretion “stop”, i.e. switch to a different regime and proceed recursively.

Before continuing, let us briefly summarize the effect of model parameters on the indifference value
pe7(y, 7). All these results follow easily from the monotonicity and concavity propertieS(af B) in
Lemma 2 and from the representation (3.6).

Corollary 3. The following properties hold for the indifference vajye-(y, i):
(@) pt7(y, 1) is increasing imy; (¢, y) for anyi (y»; measures the operational profitability of the firm).
(b) pt,7(y, 1) is non-increasing in switching costs ;.

(¢) pt7(y, 1) is decreasing in the risk-aversion parameter
(1)

(d) p:7(y, 1) is increasing in the correlatiop between the traded and production assets.

The effect of the volatility)(y) of the production pric&” onp; r is ambiguous. While volatil® increases
opportunities to be in high-value regimes, it also increases day-to-day risk and may lead to more frequent
switching costs. Thus, the overall impactigf) depends on the ensemblewfs andC; ;’s, as well as on
the parameters of thg, Y)-dynamics.

Remarld. The concurrent work carried out by Porchet et al. (2007) also studies (2.9). However, in that paper
the authors characteridé andp as solutions of a system of reflected quadratic BSDESs. In particular, this
allows to introduce a certain class of trading constraints for the manager and consider a multi-dimensional
setting. The resulting model requires more delicate handling and in Porchet et al. (2007) the main thrust
of the paper is therefore proving the existence and uniqueness results relptgdaiod V' using analytic
BSDE tools. This contrasts with the direct probabilistic method we employ which effectively sidesteps
the problem of optimal investment. Because of the different methods, the technical assumptions on state
variables and admissible controls made here and in Porchet et al. (2007) are also slightly different.

While we establish the dynamic programming principlegipgs directly in (3.12), Porchet et al. (2007)
only prove the corresponding result for the value functionBecause of their more general model, they
cannot explicitly separate the trading and managerial controls and their version of the Bellman equation
does not directly translate into an easily implementable numerical method. As a result, compared to this
study, Porchet et al. (2007) devote much less space to illustrations and comparative statics.

3.4. Limiting Cases. To better understand the mechanics of (3.6) we consider two limiting cases. The first
limiting case isp = 1, which corresponds to a complete market. Whena 1, the asset ‘Y’-cashflows are
perfectly correlated with the market benchm#sk }. Consequently, the cumulative asset prsfit-(£) can
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be replicated using a trading strategy{ii;}. Thus, intuition suggests that risk-neutral pricing should be
applied. Indeed, in that case, as shown by Henderson (2005),B) = — exp ( —ye'(x + E[B]) —

I (u2(;>(§)g)2 ds). Thereforep 1(y, ) = subeey(i,) Ety,i [Be,r(€)] and the recursive version is

(B4 prli)= s Byt / T Mpi(s, Y;) ds — Cig, +prr(Yeo 1) .
T€S(t),61€D(71,1) t

This is precisely the continuous-time version of the original (1.1) adjusted to take into account operational
constraints. Such problems have been solved in the optimal switching literature, see e.g. Zervos (2003) and
Carmona and Ludkovski (2005). Compared with (3.12), (3.14) can be seen as a linearization that arises in
the absence of market incompleteness. Conversely, the introduction of a nonlinear transformation in (3.12)
is to account for imperfect hedging opportunities and corresponds to the conaepilimiear conditional
expectationsn Musiela and Zariphopoulou (2004). This nonlinearity adjusts the expected future profits in
order to separate the hedgeable and non-hedgeable components.

At the other extreme, whem= 0, the local asset pricgY;} evolves independently of the market bench-
mark {S;}. Intuitively that should make financial hedging impossible. Indeed, plugging-n 0 into
(3.13) we getr; = 0. Thus, since it is impossible to hedge operations, the manager does not make any extra
investments in th¢ S, }-market in the presence of the asset.

The case = 0 is also related to the value of financial hedging mentioned in Remark 3. Indeed, solving
for the gain from financial hedging r(y, ¢) and observing that the supremum in (2.13) is the same as that
in (3.5) whenp = 0, we find

Pur(.1) = Myr/ou+ (por(v,0) = o (0,1))

Thus, the value of access to the, }-market decomposes into (a) expected direct gains from trading in the
reference( S; }-contract and (b) increased value of operational income thanks to reduced risk.

3.5. Discrete Time Formulation. To be able to compare the value obtained from (3.12) to the original
(1.1), one needs to consider a discrete formulation where the manager is required to make switches at
pre-specified times belonging 8° £ {0, At,2At,--- ,T = MAt}. This means that operating mode
decisions are made everyt time units, for example once a day (so thst = %), analogous to the
distinction between American and Bermudan exercise rights for a vanilla option. The discrete-time version
will also be used in the numerical implementation of Section 4.

Let U(t, T) 2 UA(t,T) = {&: 7 € S2} denote the corresponding set of discretized operating
strategies. Now it € U”(t,T), no operational control is possible betweeandt + At so the op-
timal stopping problems fop reduce to a sequence of one-period decisions. Formallyaﬂe(ty,z‘) =
SUP¢cysa (¢,1) ;—tl InE; ,; [exp(—ar B r(£))] denote the valugust beforetime ¢. Then a production regime
decision may be madenmediatelyatt or one must wait until (just before)+ At, so that by analogy with
(3.12) we obtain

) -1 - ) )
(3.15)  ppp(y.i) = max = InEy, ; [eXp(—OétJrAt e aer(Yerar, ) + Brivad(j) — emtcz‘,j])} :

Note that (3.15) has a deterministic optimization over all the possible regime selections since the corre-
sponding decision is made “today”. This was the rationale for looking at values just before switching
opportunities.
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Remarkb. The effect ofAt on the indifference valuptA’T is small. For regular optimal stopping problems
Dupuis and Wang (2005) showed that the corresponding error is of G\ t) and same bound was
obtained in a linear optimal switching problem in Carmona and Ludkovski (2005). Numerically in the
examples below we found the effect to be negligible, being lesstfiabhetweenAt = 7'/100 and At =
T/800.

4. NUMERICAL IMPLEMENTATION

4.1. Regression Monte Carlo Method. Since we allow generdf -dynamics in (2.3) and general cashflow
ratesi;(t,y) a closed-form solution to (3.6) and (3.12) cannot be expected. Therefore we must resort to
numerical methods. To do numeric computations, time must be discretized, so that we continue to work
with the discrete sef® = {mAt}M_, and the corresponding set of operating stratetfiés Lett; =
mAt,ts = (m + 1)At be two generic consecutive time steps. As shown in the previous section, finding
the indifference value of the production aSﬁétT (y,1) hinges on iteratively computing (3.15), which is a
distorted conditional expectation of futqmg

To compute (3.15) we shall use a finite-dimensional projection. Let

(41) Etl [Z ]}(y) E [exp ( — Oy (pz%,T(}/tzaj) + Bt17t2 (]) - erAtCivj)) ‘}/151 =Y, €t1 = ] .

We shall approximate this conditional expectation with a projection opefatdt, j1(y) ~ E,[i,j](y)
defined by

(4.2) By i, 4)( ZOAZB@

with B,(y) being theN? basis functions iL?(R, 73, ) anda; theRR-valued coefficients chosen to mini-
mize the squared projection error:

NB
2
a® = argmin HZO@B@ Ey i, j” .
(& 5eesy NB) /=1 L2(R+)
The canonical choice is to take, = By(F,), ¢ = 1,..., NP where{B,}, is a complete orthonormal

family in L?(R, ), e.g. the Hermite polynomials (Longstaff and Schwartz 2001). Empirically, choice of
{By} greatly affects algorithm variance and customizing the basis functions to resemble the expected shape
of the functionp, r (-, ¢) is desirable. Because we regress expressions of thedopr-ag(Y7)), we pick
basis functions of the same forBy(y) = exp(—awg¢(y)), Whereg,(y) are polynomials. Having five or
six basis functionsN? = 6, normally suffices, and having more bases can often lead to worse numerical
results due to overfitting. The exponential transformation inside (4.1) causes some numerical instability,
especially as it may produce very small values where round-off errors become a concern.

The projection operatQEt1 [i, 7] can be in turn approximated with @ampirical regressiorbased on a
Monte Carlo simulation. This replaces the optimalvith samplea. The Monte-Carlo simulation begins
by generating for eache Z; NP sample path$ymm} of the {Y;'} process (recall that this is the ‘Y’-price
dynamics conditional on the contrg) = i), with a fixed initial conditionyg’i =y = Y. If £ does not
influence{Y;}, then we can use the same set of pdt}j5,,} to compute all the conditional expectations.

We will approximate the overall indifference value by the empirical avepagey, i) ~ w5 >, p(O,yg’i, i).
Denote the one-period gains kB/mAt(ymAt, i) which are the sample realizations of (approximation to)
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f;:ff*m p(r(t + At — s)) - ¥i(s, Y?) ds conditional on starting valu&,,n; = y4,. The pathwise

valuesp(mAt, y,",,, i) are computed recursively in a backward fashion, starting m({ih y’f:i, i) = 0. At
stept;, we regress the timgy pathwise values corresponding/i, [¢, j] onto the basis functionB, (y;"”),
i.e. we findé,(t1),£ = 1,..., NB minimizing

(4.3)

2

a(t)) = arg mlnz (Z ay - Be(y,.”) —exp (—at2 (p(ta, yg’j,j) + By, (yfl’j,j) - eTAtCLj))) .
aeRNE

After determining(t1 ), this yields a predictiors,, (4, 5] (ys Y for the “continuation value” along thes, i)-

th path if an immediate switch to production regimés taken. Note that the regression uses the paths

from the j-regime, but the conditional expectation is evaluated on the paths inrtggme. The optimal

operational decision is made by identifying the index that maximﬁl}@ﬁ, I:

(4.4) &' = argmax By, [i, 1] (41)"),
J

sothatthe sefn: £\, # i} identifies all the paths where switching from regiivett = mAt is beneficial.
The overall recursivpathwiseconstruction fomp is therefore

1
(4.5) p(mAt, ymm, i) = { mA

_aA

lnEmAt[' '](yfnzt) no switch;
In Epnadli, 5](ya,)  Switch toj.

We call the above scheme Regression Monte Carlo. It was first proposed by Tsitsiklis and Van Roy (2001)
in the context of American option pricing. Note that the basic projection method does not guaran&g that
will be positive, which is a problem given the reverse log-transformation in (4.5). To overcome this issue,
one can use a constrained projection or the following more robust method.

4.2. Simulating Optimal Realized Gains. The numerical algorithm of Section 4.1 can be improved by
exploiting a device first mentioned by Longstaff and Schwartz (2001). Instead of keeping track of the
pathwisep; 7 we keep track of pathwiseealized gains Let b%m be sample pathwise realizations of

e (T=mA) B Ny (7). Sincepir(y,i) = —1/arnEyylexp(—arBr(€)], by, are proxies for
p(mAt,y,,7) in the previous section. However, applying (2.6) to the discrete-time version of Section
3.5, we obtain as the analogue of (3.15)

e TRy (€)= e A By, 1, (&) — Cer e, Te Tt TR By (€9),
which implies the simpler update rule
—rAt i .
e b + Bm , no switch;
(4.6) e = syt (et Pnasliiias ) oo
(b(m+1)At + BmAt(ymAt,])) — C;; switch toj.

The switching decision is made in direct analogue to (4.1) by replqn{ngmm) with b%’m in (4.3) and
using the corresponding version @ﬁm of (4.4). We start withbn, i = 0 and after backward recursion
report at timet = 0 po.7(y,7) ~ —aio In(+5 >, exp(—aTbg’i)).

Accordingly, we use the conditional expectations solely to decide whether a switch is optimal or not, and
propagate back the pathwise proﬁjﬁ‘si based on these decision. Consequently, the projection error only has
effect to the extent that it implies a wrong switching decision; as long as the operational policy is correct,

the pathwise realized gain is computed exactly. This device avoids the non-negativity const@tipaod
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eliminates intermediate projection errors. It also highlights the fact that the performance of the simulation
algorithm depends on the accuracy of the constructed approximately optimal operational policy.

4.3. Error Analysis and Alternative Methods. Before proceeding to numerical examples, let us make a
few remarks regarding algorithm performance. The numerical analysis of the algorithm is complicated due
to several layers of necessary approximations. In particular, because the empirical projép,;&r[is 7

use the same set of Monte Carlo paths for differ@dtt’s, the resulting errors are correlated. Moreover,
while the approximated projectiof,,,a; is a global operator depending on the cross section of all the
pathwise values ajZfAt, the Monte Carlo sampling error produces for eachn individual local error in
p(mAt,yM,, i) (or b'\,). This error is propagated back in a nonlinear fashion as it causes fluctuations in
& for earlier (in time) regressions.

A complete error analysis for our algorithm remains an open problem. Nevertheless, the widely docu-
mented success of the Longstaff and Schwartz (2001) methodology and its variants (Andersen and Broadie
2004, Carmona and Ludkovski 2005, Gobet et al. 2005), as well as stable numerical behavior in the exam-
ples below should be compelling empirical evidence regarding the performance of the approach. Moreover,
the suggested scheme is not the only possibility, as many other methods are available to approximate the
conditional expectation of (4.1). In particular, let us mention the Markov Chain approximation method
(Kushner and Dupuis 2001), the optimal quantization method (Bally et al. 2005) and the kernel regression
method (Gyrfi et al. 2002). The first two of these methods discretize the dynami¢¥;¢fand replace
them with a discrete-state Markov chdiF, }. Once this is done, conditional expectations can be computed
via the standard lattice methods. The last approach evaluates (4.1) using the fully non-parametric kernel
regressor rather than a pre-selected set of basis functions. Each of the above methods has its own strengths
and shortcomings and full numerical comparison is beyond the scope of this paper. We chose the method of
Section 4.2 for its intuitive probabilistic structure, ease of implementation and current popularity; the jury is
still out whether this is the most numerically efficient and stable approach.

From a practical point of view, the main computational parameter is the number of jgéthdeuristi-
cally, N? must grow exponentially in number of basis functiosi§. The dependence ait is unknown,
but as documented above, changedirhave little impact orp®, soAt can be taken as fixed. The overall
algorithm complexity iO(N? - (N5)3 . At). Table 1 shows the standard deviation of the initial vaiye
as a function ofV? paths used in the simulation. We find that wNi¥ = 6, At = T7'/364 and NP = 32000
the standard deviation imy 7 (1, i) is less tharl %, which is practically acceptable. Note that for snisif
the algorithm seems to exhibit a consistent upward bias. With the above parameters and implementation in
Matlab, the running time was about five minutes on a stock office desktop.

5. NUMERICAL EXAMPLES

To illustrate our results, we return to our oil-platform case study and consider a representative example
involving a geometric Brownian motion model with three operational regiines|0, 1, 2}. Let

(5.1) dS; = 0.055;dt+ 0.45, dW}, So = 50,
' dY; = 0.05Y;dt +0.4Y; - (0.9dW}! + V1 —0.92dW?), Y, = 50.

The three regimes correspond to (0) keeping the production shut down, (1) running at normal capacity of
5 million barrels/year with break-even price of $50/bbl, and (2) running at high capacity of 10 Mbbl/yr
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Number of Pathgv? Meanpg (Yo, 0) \ St. Dev.po.7(Y0,0) ‘

4000 9.25 3.17%
8000 9.05 2.29%
16000 8.92 1.44%
24000 8.91 1.34%
32000 8.89 0.86%
40000 8.89 0.78%

TABLE 1. Mean and Standard Deviation @f (Y5, 0) for Example 1 below. We use six
basis functionsV? = 6, At = T'/364 and the algorithm of Section 4.2.

with break-even price of $56/bbl. We assume that there are no other costs, so that the respective cashflow
functions (in millions of dollars) are

Yo(y) = 0,91(y) = 5(y — 50) A Cy,1b2(y) = 10(y — 56) A Cy,

where the bound’, is taken to be sufficiently large, e gy, = 2000. The last regime is therefore preferred
when prices are above $62/blk(y) > 11(y) < y > 62 . The numerical parameter values are meant to
roughly correspond to oil markets typical in 2007. Finally, we assume that the switching costs are given by
C;,; = 0.25]i — j| so that it takes $250,000 to make a sequential regime change. The interest rate. i
(so thatM; r = 0in (3.2)) and the manager has a planning horizon of six mofiths,0.5. For simplicity,
there are no other constraints and no price impact.

With these parameter values, the classical formula (1.1) gi@$) = $12.37 million. In contrast,
takingy = 0.1 we find

por(Yo,0) = 889, por(Yo,1) =886, por(Yo,2) = 8.61.

These values were obtained by running the Monte Carlo scheme of Section 4.22@iAgaths 364 time-
steps and six basis functions. The resulting valugfigr had the above means and a standard deviation of
0.86%.

Thus, the classical approach overestimates the true value by #eglyAgain, the fundamental reasons
for this overestimate are the switching costs that limit flexibility and the risk-aversion of the manager. Figure
1 shows the effect of these two factors on the indifference value of production. In particular, we find that
in the absence of risk-aversion & 0 or equivalentlyp = 1), the value would b 7(Yp,0;v =0) =
11.60, while in the absence of switching cosis; = 0V, j, the value would b 7(Yy,0;C = 0) =
9.72. The classical valu& (Yy) corresponds to the extreme top left corner where there are no constraints
and a complete market. The top boundafyt — p?) = 0 of Figure 1 corresponds to a standard (risk-
neutral) optimal switching problem, see Section 3.4, and was computed using the algorithm in Carmona and
Ludkovski (2005). Further analysis of the effect@fand~ on the problem structure is in Sections 5.2-5.3
below.

5.1. Optimal Policy. Similar to American exercise boundary for early exercise options, the optimal opera-
tional policy of (2.9) can be summarized by a switching boundary plot. The switching boundarAt)
delineates the region whefe,,a¢7(-,7) = pmar,(-,J) — Ci;} or in terms of the notation of Section 4.1,
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FIGURE 1. Dependence of indifference valpgr(Ys,0) of Example 1 on the switching
costC (we takeC; ; = C|i — j|) and the market incompleteness measy(ie— p?).

the empirical region wher@ﬁfm = j. Figure 2 shows these switching boundaries for the preceding exam-
ple. For instance, starting in the ‘off’ regime 0, the optimal strategy is to switch to regime 1 as soon as (and
only then) the commodity pricgY; } reaches the lower dotted boundaky; () in Figure 2. In other words,

7 = inf{t: Y; > I 1(t)} (since the algorithm is in discrete-time, one actually only usesmAt). Inci-
dentally, the fact that, (Yo, 2) = po,r (Y0, 1) — Ca.1 indicates that starting out in the full capacity regime,

the manager should immediately switch to normal capacity. Due to the natural ordering of the regimes in
this specific example, it can be seen that we never switch from shutdown to full production and vice versa
directly, but always go through the middle regime 1.

In the classical setting of (1.1), the switching boundaries would be straight lines at the break-even levels
of $50 and $56 per barrel. However in our model, when the price rises just al§60¢bbl and the oil-
platform is shut, the manager is reluctant to start production. This is because it would entail an immediate
costCyp,; and there is uncertainty regarding futdreprices. Instead she will wait until prices reach about
To1(t) ~ $53/bbl and will start production only then. Similarly, being in regime 1, the optimal strategy is
to switch to regime 0 only oncgY; } hits the lower solid boundady; ((¢) (about$47.5) from above. Again,
this boundary is below the break-even leveb66 /bbl, indicating that the manager will be willing to suffer
some small losses in the hope of eventual recovery rather than immediately incur the large switching costs.
Thus, the operational constraints and the managerial risk-aversion cause the appearanbgspébss
band (Dixit 1989) between ; (¢) andI'; o(¢) (and similarly betweeil'; »(¢) andI'y 1 (¢)). The hysteresis

bands showcase the path-dependency of the problem and the conservative attitudes of the manager. Because

the manager’s behavior is time-inhomogeneous, so are the switching boundaries. In particular, close to
terminal datel” the hysteresis bands widen dramatically since the immediate cost of making a production
mode switch dominates any possible gain to be made bé&fdrecall that the residual value was assumed

to be zero).
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FIGURE 2. Switching boundaries for Example 1 in Section 5.1. The figure shows the four
relevant boundarieB; o(t),['o1(t), T'2,1(£), I'1,2(t) with v = 0.1 as a function of time.

The dashed boundaries represent levels for switching to a higher production regime and the
solid boundaries represent levels for switching to a lower production regime. Because the
boundaries were generated using paths that all begin¥yita 50, for smallt none of the

paths switched to regime 2 and there is no threshold to displdy.foft) andI'; ().

Once the switching boundaries are known, the optimal production strategy is completely determined.
Namely, given a path ofY;} one sequentially checks ¥; crosses the appropriate switching boundaries
I'; ;(t) and makes the necessary operational regime changes. Figure 3 illustrates this procedure using the
boundaries above. The top panel shows two simulated pahs pin relation to switching boundaries. The
lower panel keeps track of cumulative realized gadps(£*) from the oil platforms, assuming initial regime
&, = 0. Observe thaB3, .(£*) might decrease as the manager may be losing money, e.g. running the asset
whenTI'; o(t) < Y; < 50. The discrete switching costs are indicated by instantaneous dropg3i\ (£*),
see for instance the solid curve on the lower panel areuad.25. One may also compute statistics of the
resulting total operational gair3, (£*) under the physical measuife We find thatE[ By 7(£*)] = 11.58,
andStDeuvp(Bor(£*)) = 19.57 (also recall thapg (Yo, 0) = — - InElexp(—agBor(£*))] = 8.89). At
the right tail we find thalP(By 7(£*) = 0) ~ 0.31 andP(By 7r(£*) < 0) ~ 0.047, so thatd.7% of the time
the production will result in an overall loss aBd% of the time the oil platforms will be kept shut down
throughout the six months. On the other hand, we B8, (£*) > 50) ~ 0.059, showing that highly
profitable outcomes are also not uncommon.

It remains to describe the optimal hedging stratetyyRecall thatr; (Y3, i) denotes the dollar amount that
the manager will invest in th8-asset given the current local price and the current production regime, and
was computed in terms @f (Y3, ¢) in (3.13). Figure 4 shows the optimaf(Ys, 0) at¢ = 0 for different
values ofY. This was obtained by recomputipg r(Yp, ¢) for different initial values oft;, and then using
a finite-difference approximation of (3.13). As expectet,Yy,0) < 0 since the manager will attempt to
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FIGURE 3. Optimal Operational Strategy for Example 1. The top panel shows evolution
of two sample paths ofY;}, as well as the switching boundariBs;(¢) of Figure 2. The
bottom panel shows the corresponding cumulative realized operational Baifs*)(w)

as a function ot. Switching up/down times are indicated with upper and lower triangles
respectively.

short the traded asset to hedge her production Call optiof&’dn This can also be seen from (3.13): in

our example higher prices increase expected revenues sdyth@i(-,0) > 0. Intuitively, the production
flexibility implies that the manager has a joint option on the (continuously-payitag) = 5(Y; — 50)
andCally, = 5(2Y; — 112) . Thus, wherY; is small, we expect; (Y;,0) ~ 0, whenY; is large we expect

75 (Y;,0) =~ 77 and in between we expest (Y;,0) ~ 7%, AsY; increasesr; (V;, 0) increases in
absolute value, because the Call options are deeper in-the-money. Figure 4 confirms this intuition; we see
thatr; (Y, 0) indeed interpolates betweénr$ *t andr§ .

5.2. Effects of Risk-Aversion and Correlation. In our model the risk-preferences of the manager are con-
veniently summarized in a single parameterBecause the risk-aversion parameteand the correlation
between the traded and local contractdways appear together as the prodydt—p?), the effect of chang-
ing p is equivalent to changing. We call the above product the measurerarket incompleteneseecall
that asy — 0 (or p — 1), the manager becomes risk-neutral (the asset cashflow can be perfectly replicated)
and we pass to the limiting case of optimal switching under the risk-neutral me@siWke already know
from Corollary 3 thap, r(y, i) is decreasing iry (and increasing ip). Increase in market incompleteness
can in fact be decomposed into two effects that may be termed “pessimism” and “precaution”:
e Precaution: Highety(1 — p?) makes the manager eschew more risky regimes, further widening the
hysteresis bands.
e Pessimism: Highef (1 — p?) means that the manager is more conservative and places a lot of value on
scenarios with low revenue. She will gain little utility from highly profitable outcomes.
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FIGURE 4. Delta hedging of operational flexibility for Example 1 at titne: 0. The thick
blue curve shows the optimal hedgg(Yy, 0) att = 0 for different values o}, and initial
regime 0. The sloping dotted lines indicate classical Delta hedging amofiffts, 752
computed using the equivalent of (3.13) in the absence of operational flexibility.

Figure 1 already showed the impact of changind — p?) on initial po (v, ). The rightmost panel of

Figure 5 shows how(1 — p?) impacts the switching boundari€s ;(t). Interestingly we observe that as

v(1 — p?) increases, all switching boundariesrease with a very slight widening of the hysteresis bands.

This is because the volatility of revenues is highest in regime 2 and lowest in regime 0. Thus, precaution
encourages the manager to spend more time in the least-volatile regime 0, increasing both the up-switching
boundaryI'y ; () and the down-switching boundaty; o(¢) (similar effect forl'; »(t) andI'y;(¢)). This

slight change should be contrasted with the strong pessimism effect manifested in Figure 1.

Remark6. The simulation algorithm is sensitive to the produ¢t — p?) which enters the power in the
nonlinear expectation (3.15). Thus the variance of the algorithm increasés asp?) decreases.

5.3. Effect of Switching Costs. As stated in Corollary 3, the indifference valpgr (Yo, 0) is decreasing

in switching costg’; ;. AsC; ; — 0, the path-dependency of the problem disappears and the current regime
has no influence. Thus, at every switching opportunity, the manager will simply choose the regime with the
highest payoff, so that her flexibility becomes a series of chooser Call options. Accordingly, the hysteresis
bands shrink away. The middle panel of Figure 5 demonstrates this feature by plgtifig2) against
switching cost scal€’, where we have take@’; ; = C|i — j|. At the other extreme, high’; ; makes
changing regimes very expensive and takes away much of the managerial flex@ility { takes away
nearly20% of value).

5.4. Effect of Volatility. As the volatility of local priceb increases, two conflicting events take place: (a)
ceteris paribus switching becomes more frequent, increasing switching costs; (b) there are more upside
opportunities which bring in extra profit since the manager has Call options on income. In this particular
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FIGURES. Dependence of switching boundarigg (¢) of Example 1 for a fixed = 0.2 on

model parameters. From left-to-right: the effect of the measure of market incompleteness
v(1 — p?); the effect of switching cost§'in C; ; = C|i — j|; the effect of production-price
volatility b.

example, we find that the second effect dominates and the first one is mitigated by the widening of the
hysteresis bands, see the rightmost panel of Figure 5. This happens because of precaution: there is more
uncertainty about future evolution §t;}, so each production switch is more risky and taken more reluc-
tantly. Overall, the indifference valye (Yo, 0) is slightly convex inb, a behavior similar to standard Call

opt

ions. For instance, comparedbte= 0.4, b = 0.32 reduces value by 24%; with= 0.48, po.7(Y,0) is

increased by5%.

5.5

. Further features: Example 2. To further illustrate the capabilities and structure of our model, we

consider a more complicated second example. It features the manager of a gold mining firm who has four
possibilitiesé; € {0, 1,2, 3} regarding running a particular mine location:

Mothball the site which carries zero cosfs,(Y;) = 0;

Temporary shutdown which carries fixed costdot= —$40M /yr, 1 (Y:) = —40;

Normal operation with extraction costs of $ 530/ounce and production rate of 1 million ounces a year,
plus the aforementioned fixed costs,(Y;) = (Y: — 530) — 40;

Maximum production of 1.5 million ounces a year but with a a slightly higher fixed cost of $55 million

a year to reflect hiring of extra labogis(Y;) = 1.5Y; — 850;

The cost matrix is given by

0 25 25 50
25 0 5 25
25 0 0 25|’
50 25 25 0

C=(Ci) =

so that mothballing and maximum production are very expensive to initiate and end;

The firm makes twice-weekly decisions about its operations so the operational flexibility problem has
a givenAt = 1/104; the planning horizon i§" = 2 years.

All decisions take a full two weeks to implement, during which no further operational switches are
possible.

The company hedges its production using the continuously-traded liquid London bullion rhérket
wheredS; = S;(0.05dt + 0.2dW}!).
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e Production is tied to the local wholesale price which is modeled by
(5.2) AY}¢ = k(Infy (&) — InYS) - Y dt + bYS - (0.99 AW, + /1 — 0.992 dW?).

e Above parameters afg (0) = 0y (1) = 0y (2) = 600, 0y (3) = 580, x = 1, b= 0.2, r = 0.06.

e The risk-aversion coefficient ig = 0.05.
The dynamics (5.2) is the log-normal mean-reverting model often used for commodities (Schwartz 1997).
For a fixed production regime,Y;'} will tend to be aroundly (i), more precisely{lnY,’} follows an
Ornstein-Uhlenbeck process with mean-reversion I&vél-(i). Observe that this level is taken to de-
pend on&;, modelingprice impact Namely we suppose that when extraction proceeds at maximum rate,
local supply of gold increases and drives prices down from a me&600f/ oz to $580/0z.

The operational inertia feature described implies that 4At in the notation of Remark 2. This is
incorporated into the numerical algorithm by adjusting (3.15) to

) -1 . ) .
por(y,i) = {I?Qf( o InEy [exp( s, Ipivs, 7 (Yers; ) + Brirs, (7) — €™ Cz',j])]}

-1 _ . .
\ {Oét In Et,y,z‘ [exp(—aHAt[pﬁrAt’T(Y}JrAt, Z) + Bt,t—&-At(Z)D} } .

Observe that in the model considered, the measure of market incompleteness is rathefismafl) =
9.95 - 10~* and the switching costs are relatively high. Consequently, the precaution effect is expected to
be much more influential compared to Example 1. Also, the manager must balance between temporary
shutdowns (regime 1) that maintain future flexibility, and mothballing that eliminates the fixed/€o%te
find that forYy = $600/0z,

por (Yo, ) = [45.06, 55.33, 61.58, 60.45].

For comparisonlE[LfO?(Yt —570) dt |Yo = 600] = 47.13, so even though the mine is generally profitable and
one expects regime 2 to be most common, the flexibility of the manager increases value by over $14 million,
or almost 30% compared to the case of just running it in standard production throughout the two years.

As illustrated in Figure 6 the structure of the switching boundaries in this example is rather non-trivial:

e From mothballed regime 0, the decision maker will wait until prices rise all the wd tdt) ~
$640/0z and then switch directly into regular production;

e From the ‘off’ regime, the manager will either mothball the mine if prices drop to aboy{t) ~
$480/0z (recall that regular production cost3530/0z), or go to regular production if prices rise to
aboutl’; 2(t) ~ $550/0z;

e From regular production, the firm will either go into no production if price drodstp(t) ~ $495/0z,
or into maximum production if prices skyrocket i 5(t) ~ $725/0z. Observe that even though
the dis-economy of scale is very small, the price impact and high switching costs make the manager
reluctant to go into maximum production.

e Finally, from maximum production the firm will keep producing until prices dromtex(I's 2(¢), '3 1 (1)) ~
$495/0z. Early on it will then shut down production, however after a few months the best action be-
comes switching to regular production instead. This bifurcation shows that the time-dependence can
lead to quite complex effects.
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FIGURE 6. Switching boundaries for Example 2 of Section (5.5). We show the seven
relevant boundarie¥ o(t), I'12(t), T2,3(t), I'32(¢), I'31(¢),I'21(¢),T'1,0(t) as a function

of time t. The dashed boundaries with upward arrows represent levels for switching to a
higher production regime and the solid boundaries and downward arrows represent levels

for switching to a lower production regime.

5.6. Effect of Operational Constraints. We now investigate the effect of changing the various constraints
faced by the gold producer. The results are summarized in Table 2. As the first step, we study the effect of
operational delay. One could imagine that the firm can invest in a more streamlined execution structure
that will reduced and wants to assess the resulting benefits to determine the viability of such an upgrade.
The first few rows of Table 2 show the effect of doing so for various valuésaimpared to the base case of
0 = 4At. While the absolute changes are not very large, compared to the whole “flexibility” benefit of $14
million they are significant. Thus, going to= At (so that a decision leads to effective production change
within half a week) will increase flexibility benefit by another 14%. For comparison, if implementation
delay were to become a full month, almost $2 millon would be lost.

We next consider the extra flexibility afforded by the mothballing regime 0. First, imagine that mine
mothballing must be permanent, which is equivalent to setfing = +oo for all 5. We find that the asso-
ciated value drops b$0.2 million, which is very small. On the other hand, if we imagine that mothballing
is not possible at all (equivalent @; , = +oo for all j), then value drops by anoth&d.6 million or a total
loss of 6% of flexibility benefit. Thus, we see that regime 0 does make a significant contribution to overall
flexibility of the manager and that it is indeed used as a long-term mothballing state (since one very rarely
switches out of it).

Finally, we can consider by how muph (y, ¢) is reduced by the price impact. Changing{q3) = 600
we find thatpy (600, 1) increases by nearly $7 million, showing that market power can have very strong
effect on overall profitability. The effect @f on {Y;} also explains the extreme reluctance of the manager

to switch into high productionl{; 3(¢) of over$720/oz in Figure 6).
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Model Change | por(¥o,1) | por(Yo,2) |
Base Casé = 4At 55.33 61.58
0 = 8At 53.29 60.73
0 = 2At 56.62 62.26
= At 57.31 62.64
Permanent Mothballing 55.08 61.32
No Mothballing Possible 54.49 60.68
No Price Impacty (3) = 600 62.23 68.78

TABLE 2. Effect of various operational settings on the indifference price of operational
flexibility in Example 2 of Section 5.5. Values were computed using the simulation algo-
rithm of Section 4.2 withV? = 40, 000 paths andV? = 6.

6. CONCLUSION

In this paper we have studied the problem of optimal firm management using a joint operational/financial
strategy. This approach allows overall risk-management of the firm with both financial and operational poli-
cies given equal footing. Our model links the methods of option pricing in incomplete markets (Carmona,
ed. 2006) with the real options literature (Dixit and Pindyck 1994). This is reflected in the solution struc-
ture which consists of standard portfolio optimization problems between production decisions and switching
boundaries that determine production regimes. Moreover, the representation as a series of coupled American
options is intuitive for the manager and gives simple and familiar policy guidelines. Besides being compre-
hensive, as illustrated in the last section, our model also permits a highly granular approach for analyzing the
effects of various operational constrains, ranging from switching costs to impact of market power. Looking
forward, our model can also be used for strategic production planning (expansion, mergers, upgrades, etc.)
via comparison of indifference valugsr(y, i;U) for assets with various acceptable policy $éts

In terms of model parameters, we found that the risk-aversion of the manager induces a strong pessimism
effect (on the order of 10%-50%) on the valpgr(y, i) of the asset, and a weak precaution effect (on the
order of 1%-5% in terms af; ;) on the optimal production policg*. On the contrary, the fixed switching
costs have only 2% — 5% effect onpg (y, ¢) but strongly influence the width of the hysteresis bands. Since
the optimal operational policg* is determined by{T’; ;(¢)}, a possible shortcut for approximating the full
model (2.9) is to solve a standard linear optimal switching problem under the minimal martingale measure
Q. This will (nearly fully) reflect the effect of switching constraints; the pessimism effeg{ bf- p?) can
then be added-on via a volatility penalty &3 (£*), as explained by Henderson (2002):

1. - *
- InE; ,; [exp(—arBir(£%))]
t

~ g "(T1) {Et,y,i [Ber(€)] = w

Vareyi(Bor(€) + 0 (1= 22 |

6.1. Liquidity Risk. A different interesting application of our framework can be found in the area of liquid-

ity risk. Consider a portfolio optimization problem using one liquid asset with negligible transaction costs,
and one illiquid asset with significant transaction costs. Such a situation arises whenever a thinly traded
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underlying{Y;} (e.g. an exotic commodity forward) is tracked using a closely related market copiact
The action set of would now correspond to various possible positions takén and the functions); (¢, y)
will reflect the resulting P&L. The fixed switching costs ; model the liquidity constraints of trading in
{Y:}, and one can also incorporate again price impact of the trading strateagthe illiquid price{Yf}. A
related model has been recently studied by Ly Vath et al. (2007) using analytic pde methods.

6.2. General Utility Processes.Recall that in the case of exponential utility we obtaiitedativity of the
indifference value in (3.12) across time-periods. This natural feature is very attractive and matches one of
the basic properties of the classical method (1.1). We stress that it is not intrinsic to the indifference valuation
method; rather it follows from our choice of exponential utillityfx). In fact, as shown by Cheridito and
Kupper (2006), within the expected utility framework, exponential utility is the only one that satisfies this
iterative structure of (3.12).

However, it is possible to extend the model beyond terminal expected utility framework. Note that the
latter is actually rather limited in practice, as it assumes the manager only carediablouealth level at
T. Arealistic manager is likely to have preferences not over wealth levels ai date over entire wealth-
paths ovef0, 7. For instance, the firm might prefer to avoid having the wealth dip too low at intermediate
time points to prevent a credit crunch, or it might wish to do earnings management by minimizing volatility
of cashflows. Such a setup can be accommodated in the framework of monetary utility processes introduced
by Cheridito et al. (2006). The idea is to replace the single utility fundtioA ) with a sequence of utility
functionals of the fornU; 7(X.), which assign to a wealth proce§X;);< its risk-adjusted datevalue
based on the entire evolution fromo 7". Thus,U, r is a map from say.>°([t, T] x R) to L>(F;). In this
paper, we worked with the entropic monetary utility process where

6.1) Upr(X.) = —i In EQ exp(—X7)| £

Another popular possibility is the worst-stopping functiofigl-(X.) = essinf ¢s) E[XT]}}]. Once a
particular family{U; 1 }+<7 is picked, the optimization problem (2.9) becomes

V(t,z,y,S,i) = ess sup Uit (X.t’“r’g), Yi=9y,S =s& =1
reA(,T),E€U(t,T)

and the resulting indifference valuation method is

(6.2) pgT(y, i) = ess sup Uit (X,t’x’ﬂ’f) — esssup U r (X,t’””’”), withY; =y, & = 1.
TeA(LT),E€U(t,T) TeA(t,T)

For this to make economic sense, it is necessary that the fdiijly } be time-consisten(Cheridito et al.
2006). Time-consistency is also sufficient for the problem to be invariant with respect to initial wesath
for p,  to satisfy a recursion similar (3.12). Computationally, both properties are crucial for tractability and
also allow one to use the Longstaff and Schwartz (2001) approach of Section 4.2 over the coupled optimal
stopping problems. The theory of monetary utility processes in continuous-time is still incomplete (see
some recent progress inéfdpel and Schweizer (2007)), but offers exciting possibilities for more realistic
modeling of our problem. We leave further work in this direction to future research.

Another alternative is to consider a horizon-independent construction which refialésgether. Su-
perficially this would rule out an expected utility framework. However, thanks to time-consistency of expo-
nential utility, this is in fact possible using the ideas of Henderson and Hobson (2007). Unfortunately, it is
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not clear how to choose a proper risk criterion over operational production, in particular given seasonality in
commodity markets that necessitate keeping track of calendar time and exclude time-stationary solutions.

APPENDIX: PROOFS

Proof of Lemma 3. We prove the lemma by induction. First for= 1, the control set is simplyf! (o, T') =

{& = (0,&,71,&1)} where the only choices are for € S(o) and&; € D(m,&y). Hence, using (2.6) and

Or = aTeT(T_TI) ,

gf)l(a, Y,,i) =  esssup E [— exp(—aTBa,T(g))‘ .7-}}
feul((LT)on':i

= essswp  E[-exp(—arle" T By, (i) — Cig) + B (€0)])| 7o
7'168(0’)7516'D(7'1,i)

= ess sup E |exp(—ar, [Bor (i) — Cig,]) - I_ET[— exp(—ozTBTLT(fl))! ]:n]
T1€8(0),£1€D(T1,%)

7

= ess sup E exp(—aﬁ [Bgﬂ-l (7,) — Ci,El]) . ¢0(T17 le,fl)‘ fo] .
T1€8(0),£1€D(71,1)

Next, suppose (3.9) is true farand consider (3.9) whehis replaced by + 1. Leté € ¥ (o, T) be
an arbitrary control witt§, = i. Writing &€ = (0, i, 71, &1, €®)) with €%) e 1/*(, T') we obtain

E [— exp(—ar By r(§)) }—a} =E [— exp(—aT [e"T=™)(B, 1, (i) — Cig,) + Bn,T(ﬁ(’“))]) ‘ fo_]
=E [GXP(—Oén [Bor (i) — Cig,]) - E [— exp(—aTBTl’T(,g(m)) | fmggf) _ 51} ‘ fo}

< E [exp(=an, [Bon (1) — Cig,]) - 6" (n, Yo, €0)| 7]

where the last line is by the induction hypothesis. Taking essential supremum (with respem tihe
left-hand-side and with respect tey, £;) on the right-hand-side) yields

qﬁkH(U, Yo,i) = ess sup E [— exp(—aTBC,,T(&)) ‘ .7:0}
feuk+l(U,T),fU:i

(A1) < ess sup E [exp(—aﬁ [Bor (1) — Cz‘,gl]) . gZ)k(Tl, Yn,gl)‘ ]—}} .
T1€8(0),61€D(71,1)

Conversely, le{r,£) be an arbitrary pair ifS(o), D(71,4)). It is easy to check that the control set
U*(r,T) is stable under pairwise maximization (directed upwards) and therefore there exists a sequence
¢ e Yk(r, T), £ = & such that

O (r1, Yoy, €0) = Tim 1B [—exp(—arBr, p(6™)| £ |
Then, foré™ £ (5,4, 7, &, ™) € U**+1 (0, T) we have
¢k+1(0_7 Yav Z) > lim sup I_E -_ exp<_aTBa,T(é(n))) ‘ fa]

n—oo

= lim sup E :— eXp(—OéT [GT(T_Tl)(Ba,n (2) - Ci,fl) + Bn,T(f(n))]) ) '7:0}

n—oo

= lim sup E :exp(—ch1 [Bo.r (1) — Ci,gl]) -E [— exp(—ozTBThT({(")))‘ .7:71} ’fa}

n—oo
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by Monotone Convergence Theorem the limit can be passed inside the expectation
=E [exp(_aTl [Bcr,n (’L) - Ci,&]) ’ nh_{gOE |:_ exp(—aTBmT(g(”))ﬂ fn] ‘ —7:0:|

=E [exp(—ozf1 [Bori (i) = Cigy]) - ¢* (1, Yﬁ’&)’ f”} '

Sincer; and¢; were arbitrary, taking essential supremum on the right hand side shows that
¢k+1(07 Y0'7i) > €sssup E [GXP(_an [BO',Tl (Z) - 02,51}) ' ¢k(T17YT17§1)’ f0:| )
T1E€8(0),61€D(71,1)
and combined with (A.1) concludes the proof of Lemma 3. O

Proof of Lemma 4. The proof will be established by induction. Hoe= 0, take
S T t
3 =B |—exp(—a(L- ) [ @057 as) ft} exp (fy(l =) [T s ) ds) .
0 0

Theng? is a product of two smooth functionals of the Feller procesand clearlyp® (o, Yy, i) = ¢o".

Now suppose that the lemma has been proved fand consider the case whérés replaced by + 1.
Fix i« € Z; and define

o1 2 max{exp(—ar(Bo(i) - Cig)) - 6 (8,1, ) }-
JFi

By the induction hypothesig)* is a continuous/F-progressively measurable, bounded process. General
theory (El Karoui 1981) then implies that the Snell envelgfie! (o) = esssup, s, E[¢F'| F,] of gk
is a regularF-supermartingale, i.e. there is a continudtimdapted process®!7 such thatp*t1 (o) =
o5 tH. Furthermore, the optimal stopping problenp, . IE[gf)fZ] has an optimal solution explicitly given
by 7* = inf{s: &' = @511, We now compute

G0 Yoi) = esssup B [exp(—an, (Bog (i) — Cig)) - 65 (n, Yoy 60)| 7o
T1€S(U)7£1€D(T1,i)

= essup B [exp(—an(Bo,n (i) - / I (s, Y,) ds = Cigy)) - (1, Yoy )| fg]
T1€S8(0), 0
glle,D(Tlvi)

= explas Bo,g (1)) - 6 71(0) = explag Boo(i)) - FHH

On the last line as a function ef we have a continuousrocess which establishes the required regularity
of **1(-,-,4). The uniform bounds om(—¢**!) easily follow from the bounded payoff rates:

T
| In —¢F(t,y,4)| < InEfexp(v(1 - p?) /t " T0Cy ds)] < (1= p*)(T — 1)’ 71 Cy,.

O

Proof of Lemma 5. This follows by an easy induction argument. Indeed, the equality fer 0 holds by
definition ofp® and assuming it is true fdr we have from (3.9)

Py = s B fexp(—an [Bin () - Cig) - 6" (1, Yo, €0)|Yi = o]
T1ES(t),£1€D(71,%)

= sSup E [_ exp<_aT1 {Bt,Tl (Z) - O’L,£1 +pk(7—17Y717£1)}))}/% = y:|
T1ES(t),£1€D(71 %)

= eXp(_at : gpk(tv Y, Z)) = - eXp(—&t : karl(ta Y, Z))
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by using the induction hypothesis for the second equality and (3.11) for the third one. As proved in Lemma
4,|In(—¢"(t,y,4))| is bounded, which implies the same fpf (,y, )| < y(1— p*)(T —t)e"T=0C,. O

Proof of Proposition 2. By Lemma 5 we have thai*(¢,v, ) is increasing ink since the corresponding
control sets in (3.8) are growing. On the other hand, sittec U, p*(t,y,4) < pir(y,i) < oo, and the
pointwise limitp> = limy_., p* is well-defined and finite. Clearly™(t,y,4) < p.r(y,7). To show that
p>(t,y,i) = per(y, 1), it suffices to show that for any > 0, one can find a-optimal policy ofp. ()
which is finite, i.e. belongs to sonaé” (¢, T') for K large enough.

Let £° be ane-optimal policy ofp, r(y, ). Since is admissibleyg — 7' in probability, and there is a
K large enough so thd: , (T < T — €) < e. For thatK, take¢™ € ¢ to match¢e up to theK-th
switch, with no switches after;,: ¢£(t) = §°(t) Licre, +&(7 ) Le>re . Then using the fact that operational
payoffs are bounded, and lettinh= {7}, > T — €}, we have for any strategy

‘aTBT;(,T(g)’ < aTC¢TeTT]1Ac + EC¢]1A =: C11 4c + Cael 4,
for some constants';, C, independent of. Applying the above, relation (2.6, ,,:(A) > 1 — e and using
the fact thata,c By - (€9)] < v(1 — p*)(T — t)e"T=DCy =: C3 we have
PRty 1) — (pr(y. i) — €) > p™ (., 4 6%) — pur(y,i; &)
1, By, [exp(—ar(e"T=7i) By r (€°) + Bre 1(£9)))]

o 1= r(T—7%) € €
Qg Et,y,i [eXP(*OéT(e K Bt,‘rf( (5 ) + BT;(,T(é-T}‘()))]
1 | Et,y,i [exp(—aT%Bt’T;{ (56)) . {exp(—ClﬂAc — CQﬁ]lA)}]

n—
ot Eyyilexp(—aqre Bire (€9)) - {exp(Crlae + Caela)}]
1, Ety.i[exp(—azre Bire (69))] - (1 — 2¢Ca) + (exp(—Cy — C3) — exp(Cs))e

n —
Qi Eiy,i[exp(—are Byre (€9))] - (1+ 26¢Ca) + exp(Ch + C3)e
> _402 +4exp(Cy + Cg)6

- Y

Qi

v

v

where the last inequality usés(1 — z) > 1 — 2z for  small enough. Since was arbitrary this implies
limy o0 P¥(t, y,4) > prr(y,i). The fact thap,  is a fixed point ofG easily follows from the increasing
property ofG: if w! > w? thenGw! > Gw?. Sincep, r(y,i) > p*(t,y,i) we have

k+1(

gpt7T(y7 Z) > lim gpk(t, Y, Z) = lim p t, Y, Z) = pt,T(yv Z)
k—o0 k—oo

> lim p*(t,y,i) = lim Gp*~'(t,y,i) = Gprr(y, i),
which implies that all inequalities must be equalities and therefore (3.12). The increasing progeaigof
implies thatp; (-, i) is thesmallestfixed point ofG bigger thap®(¢, -, 7).
The bound omp, 7 is immediate by

) 1 — "
pt,T(y,Z) = _OTt lnEt,y,i[eXp(—OéTBt,T(f ))]

1 _
< oy In By yi[exp(—ap(T —t)e"TCy)] = (T — t)Cy.

To establish the Lipschitz property pf r we recall that by Assumption 3, the flaw— Y,/ (w) is locally
Lipschitz, so that for any compact bal(y, ), andt’ € [0,¢] there is a constanf'(y) such thaty,}> —
Y/' < C(y) P-a.s. for anyyi,y» € B(y,r). By the boundedness af;, we have the similar estimate
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|Ber(&591) — Ber(&y2)| < (T —t)e"TCyC(y) =: C1 where we explicitly show the dependence of the
realized gains on the initial condition ¢¥; }.
Let ¢! be an optimal strategy for, 1 (y1, ). We obtain

per(y1,9) — per(y2, 1) < per(y1,1) — per(ya,is €Y
L Eyy, ilexp(—ar By r(€'))

]
ot Epy,ilexp(—arBer(EY))]
1

_ 1 Eyilexp(—ar(Bir(y1,€") — Brr(y2, &) exp(—arBir(y2,€'))]

a Bty ilexp(—ar By r(£1))]
L Bt ilexp(—arCilys — 1) - exp(—arBir(y2. €'))]
o Et y, ilexp(—ar By r(€h))]

aT
= —Cily2 — y1)-
%

Repeating the same argument usji@stablishes the opposite inequality and we concludeghaty,, i) —
pe.1(y2,1)| < e"TChly2 — 1| uniformly in ¢ and on compact subsetsyn O
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