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ager of an industrial asset. The operator has control over the production modes, but faces operational constraints

which introduce path-dependency. Moreover, the operator is only able to imperfectly hedge her income on the

futures market. Using an exponential indifference valuation approach we construct a combined stochastic con-

trol formulation that merges the problems of optimal switching and indifference pricing in incomplete markets.

We then present an iterative scheme for valuing operational flexibility which in particular shows additivity of

indifference value over time. After discussing details of numerical implementation, we illustrate our results

with several numerical examples and comparative statics.
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1. INTRODUCTION

Optimizing operation of industrial assets is one of the key problems studied by management science. The

manager in charge has control over the operating modes and attempts to maximize expected profit which

is tied to a stochastic state variableY . Thus, she holds a sequence of timing “real options” on the possible

revenues. A common example is a commodity production asset withYt representing the current commodity

price. In this case, the manager has a series of start-up/shut-down options on production. Suppose that the

manager can adjust the production regime every∆t time-units and has a choice ofI possible regimes with

associated cashflowsψi(t, Yt), i = 0, . . . , I − 1. The classical theory (Dixit and Pindyck 1994, Eydeland

and Wolyniec 2003) then implies that the value of the above flexibility on a time horizon[0, T ], T = M∆t
is given by

V̄ (y) = EQ

[
M∑
m=1

max
i

e−rm∆tψi(m∆t, Ym∆t) ·∆t
∣∣∣∣Y0 = y

]
,(1.1)

whereQ is the risk-neutral pricing measure for the{Yt}-market. Thus, computing the associated value is

reduced to pricing a series of chooser Call options onY . It has been long recognized that (1.1) will in fact

overestimatethe production value due to two crucial phenomena ignored by the classical theory:

(a) The manager faces operational constraints that limit her flexibility;

(b) The asset cannot be perfectly hedged, negating the replication premise underlying risk-neutral valua-

tion. Moreover, the manager is risk-averse and will choose strategies that reduce risk.

Property (a) implies that instead of the sequential Call options of (1.1) one must consider exotic, and

particularlypath-dependentoptions held by the manager. In fact, for a full account of the constraints, one

must work with an entire operational (impulse) controlξ = (ξt)0≤t≤T which represents the dynamic se-

quence of managerial decisions. After the early seminal paper of Brennan and Schwartz (1985), these issues

have been addressed by several papers under the rubric ofoptimal switching. The pde-based approach of

quasi-variational inequalities has been considered in Brekke and Øksendal (1998) and studied more thor-

oughly by Zervos (2003). A probabilistic method was first taken up by Yushkevich (2001) in discrete time;

continuous-time versions were then analyzed by Hamadène and Jeanblanc (2007) in the framework of back-

ward stochastic differential equations (BSDEs) and by Carmona and Ludkovski (2005) and Dayanik and

Egami (2004) using Snell envelope techniques.

Property (b) arises due to fragmentation of commodity markets as a result of geographical and physical

characteristics of the products. Consequently, the manager faces abasis riskbetween the actual commodity

produced and the standardized traded contract used for hedging. Thus, the problem must be represented

in terms of optimal investment in an incomplete market with (controlled) stochastic income. The risk-

preferences of the manager are also important. For instance, poor performance might result in a manage-

ment re-shuffle and/or worker lay-offs, measures that are undesirable and correspond to a large negative

externality. Alternatively, a streak of losses could lead to a credit crisis and rating downgrade of the firm. As

a result, the management is likely to place extra emphasis on avoiding bad outcomes and will eschew exces-

sively risky decisions. A natural way of incorporating manager preferences is to apply utility-valuation via

an indifference pricing mechanism. The problem of utility maximization withexogenousstochastic income

has been analyzed in El Karoui and Jeanblanc (1998), Henderson (2005) and with a consumption control

in Miao and Wang (2007). An extension beyond expected utility has been recently considered in Klöppel



FINANCIAL HEDGING OF OPERATIONAL FLEXIBILITY 3

and Schweizer (2007). The related problem of indifference pricing of (European) random endowments has

also been extensively studied, see e.g. Henderson (2002), Musiela and Zariphopoulou (2004), Stoikov and

Zariphopoulou (2005), Ilhan et al. (2006). The common feature of all these papers is an introduction of a

nonlinearity to account for the manager’s risk aversion.

1.1. Combined Formulation. In this paper, we merge the two aforementioned strands of literature to ex-

tend (1.1) in a way that explicitly incorporates operational constraints, imperfect hedging possibilities and

risk-preferences of the manager. Thus, we inject risk-preferences into an optimal switching model, or con-

versely add anendogenouslycontrolled stochastic income to the problem of utility maximization. While

traditionally the operational and financial arms of the firm have been valued separately, to extract maximum

benefits a “holistic” global approach is needed. This is achieved by a combined stochastic control framework

which provides a coherent way of analyzing the joint behavior of the manager. The use of a fully dynamic

setting properly reflects operational constraints while correctly pricing traded/non-traded risks. Our model

is robust and can incorporate many practical extensions; moreover it is computationally tractable, which

allows us to give several numerical illustrations. In particular, we use the examples to highlight the interplay

between the financial and operational components and to study the role of various constraints.

While this project was completed we became aware of a parallel independent work by Porchet et al.

(2007). They consider a very similar financial setting, but frame their model in the context of backward

stochastic differential equations. We give a detailed comparison of the two approaches in Remark 4.

1.2. Case Study.Before proceeding, let us discuss a case-study that will be used as motivation for further

analysis. Consider an oil producer that operates several deep sea oil platforms, extracts oil of specific grade

‘Y’ and sells it on the market. The company management wishes to maximize risk-adjusted profit on some

planning horizon ofT years (e.g. for an annual plan). The profit depends on the amount of oil extracted, i.e.

the operating policy, as well as on the contemporaneous price of oil, which is random and unpredictable.

To achieve its goals the firm has access to two channels. First, the company controls its own production

regime. Thus, when oil prices are lower than extraction costs, the manager has the option to shut down

production to minimize losses. Conversely, when commodity prices are high, the company can take full

advantage by running all platforms at maximal capacity. This operational flexibility is limited by various

engineeringconstraints:

• Changing the production mode is costly: one must dispatch workers to start/stop the platforms and

coordinate with the nearby oil pipelines;

• Changing the production mode takes time: the above dispatch takes several days until oil is flowing at

the full rated capacity;

• The firm may have market power. While the firm is a negligible player in the global oil market, there

are hundreds of specific oil grades and the firm is likely to be a major producer of grade ‘Y’. Thus, if

grade ‘Y’ is thinly traded, increasing the firm’s production will tend to depress local prices.

Second, the firm has access to the oil futures markets where it canhedgeits revenues. Financial trading

can mitigate the risk associated with uncertain future prices, but also brings risks of its own. In North

America the only liquidly traded oil contract is the New York Mercantile Exchange (Nymex) futures based

on the West Texas Intermediate (WTI) oil grade. However, less than10% of all oil produced in US is of

WTI grade, and in particular the firm under consideration produces oil of grade ‘Y’. While the WTI and ‘Y’



FINANCIAL HEDGING OF OPERATIONAL FLEXIBILITY 4

prices are likely to be highly correlated, hedging is still imperfect and any trading strategy exposes the firm

to the residual basis risk.

Given this setting, the manager wishes to find an optimal production policyξ and an optimal financial

trading policyπ that would maximize her expected risk-adjusted income over the planning horizon[0, T ].
Moreover, she is interested in understanding the components of this value, namely the relative costs of con-

straints, the benefit of each flexibility and the respective synergies in case of potential strategic opportunities.

The resulting model is also applicable to many other economic setting beyond commodity production. Let

us mention here management of industrial plants that have fluctuating input costs, labor force administration

(with the stochastic factor representing demand), and multi-stage capacity expansion budgeting.

The rest of the paper is organized as follows. Section 2 rigorously constructs the associated control

problem; Section 3 then characterizes the structure of the optimal strategy and gives an iterative expression

for the indifference value of operational flexibility. Section 4 provides a complete numerical implementation

using a simulation approach, which is then used to present two illustrative examples in Section 5. Besides

numerical evidence, comparative statics are also analyzed. Finally, Section 6 summarizes our results and

discusses further extensions. Most of the technical proofs are delegated to the Appendix.

2. MATHEMATICAL FRAMEWORK

Let Yt andSt denote the prices at timet of the local and reference contracts respectively. Thus in the

oil company example,Yt is the price of the produced grade ‘Y’ oil, whileSt is the price of reference

WTI futures. We assume that{Yt} and{St} are one-dimensional and that{St} satisfies an It̂o stochastic

differential equation (SDE) of the form

dSt = µ(t)St dt+ σ(t)St dW 1
t ,(2.1)

whereW 1 is a standard one-dimensional Brownian motion on a stochastic basis(Ω,F,P), andµ, σ are

bounded deterministic functions satisfyingσ(·) > εσ > 0. Thus,{St} is a time-inhomogeneous geo-

metric Brownian motion. Due to strong seasonality of commodity markets we will explicitly show time-

dependence of parameters throughout the paper. Precise dynamics of{Yt} will be specified later on in

(2.3).

Besides producing oil priced atYt and having access to the{St}-market, the company also maintains a

risk-free bank account that earns interest at ratert at timet. For clarity of presentation we takert = r to be

a fixed constant. The extension to deterministic time-varying interest rates is straightforward.

2.1. Operational Characteristics. The process{Yt} is used to define the income flow for each operating

regime of the asset. We postulate that there are a total ofI different operating regimes that we label for

convenience asZI , {0, 1, · · · , I − 1}. The ordering might indicate the production level (e.g. “offline”,

“50% capacity”, “maximum capacity”, etc.), but in general is completely symbolic. For each operating

regimei ∈ ZI , there is a corresponding (possibly negative) income flow at instantaneous rateψi(t, Yt)dt. In

the case of the oil producer,ψi(t, Yt) represents the nominal value of the oil sold, subject to the assumption

that every barrel extracted is immediately sold at prevailing market price. We impose the following

Assumption 1. For eachi ∈ ZI , the payoff rateψi : [0, T ]×R+ → R is uniformly bounded,|ψi(t, y)| 6 Cψ

for some constantCψ. In addition,ψi is continuous and has a continuous derivative,ψi ∈ C1
b ([0, T ]×R+).
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Remark1. Assumption 1 is strictly speaking violated for most practical cases which typically involve in-

come flowsψi that arelinear in the commodity priceYt. However, one could always boundψi while

ensuring that the economic accuracy of the model is not affected, see e.g. a similar Remark 1.2 in Ilhan

et al. (2006). Bounded income rates guarantee that operational profits are always finite; this is certainly

economically plausible.

An operational strategyξ is a double sequence(τk, ξk), k = 0, 1, 2, . . ., with ξk ∈ ZI representing the

sequence of chosen production regimes and0 , τ0 ≤ τ1 ≤ · · · ≤ T representing the times of operating

regime changes (from now on termedswitching times). The entire strategy is then the right-continuous

ξ : [0, T ]× Ω→ ZI with ξt = ξk if τk 6 t < τk+1 or

ξt =
∑
τk<T

ξk · 1[τk,τk+1)(t).(2.2)

To match the continuous-time nature of the rest of the model, we have assumed that changes in operating

regimes can be carried out at any point in time. A discrete-time version that matches the classical formulation

in (1.1) will be discussed in Section 3.5.

Once a strategyξ is selected, the resulting operation has three effects:

(a) Nominal revenue at rateψξt(t, Yt) dt is generated at timet;

(b) Discrete costs are incurred at times of regime switches. We label these asCi,j ≡ Ci,j(t, Yt), for the

expense associated with changing the production from regimei to regimej;

(c) ξ affects the dynamics of the local price{Yt}, which follows an SDE of the form

dYt = a(Yt, ξt) dt+ b(Yt, ξt) · (ρdW 1
t +

√
1− ρ2 dW 2

t ).(2.3)

With respect to the switching costsCi,j we make the standing

Assumption 2. For everyi ∈ ZI ,Ci,i = 0 andCi,j ≥ 0,∀j 6= i. Also, for alli, j, k ∈ ZI Ci,k ≤ Ci,j+Cj,k
and for anyi, j1, j2, . . . , jn ∈ ZI , Ci,j1 + Cj1,j2 + . . .+ Cjn,i > εC > 0.

SinceCi,j ’s satisfy the triangle inequality, multiple simultaneous switches are ex ante suboptimal. The

last item in the assumption means that switching costs are strictly positive over any “cycle” of decisions.

The presence of switching costs implies that the initial regimeξ0 affects future strategies and introduces

path-dependency into the operational optimization problem.

Regarding the dynamics of local prices in (2.3), the driving processW 2 is another one-dimensional

Brownian motion, independent ofW 1 driving (2.1), and−1 ≤ ρ ≤ 1 is the correlation parameter. Typically

ρ is close to+1, indicating a high degree of positive dependence between the market futures contract and

the local ‘Y’ commodity. We also postulate that

Assumption 3. For all i ∈ ZI , the coefficientsa(y, i) and b(y, i) are bounded and uniformly Lipschitz

continuous and the volatilityb(y, i) > εy > 0 is non-degenerate.

The effect ofξ on{Yt}models the market power potentially exercised by the manager due to the fundamen-

tal laws of supply and demand. For instance, it can represent the condition that when production increases,

the supply of the output commodity grows, which in turn tends to drive prices down (or conversely the de-

mand of the input commodity shrinks and prices increase). Due to random price fluctuations, this effect is

not deterministic, but is instead incorporated into the price dynamics (deterministic effects can be included
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directly inψi). When we wish to emphasize this dependence of{Yt} onξ, we will occasionally write{Y ξ
t },

and{Y i
t } for ξt ≡ i ∈ ZI . We denote byFt = σ((Ys) : 0 6 s 6 t) the filtration generated by{Yt} and by

F̃t = σ((Ss, Ys) : 0 6 s 6 t) the joint filtration of{St} and{Yt}.
Not all controls are acceptable. First, sinceξ should be based on current production conditions,τk are

required to beF-stopping times. For aF-stopping timeσ let S(σ) = {F-stopping timeτ : σ ≤ τ ≤ T}
(with S = S(0)) be the set of all stopping times betweenσ and T. Then we needτk+1 ∈ S(τk). Also, the

production decisions must be done on the basis of information at switch time, i.e.ξk ∈ D(τk, ξk−1) where

D(τk, ξk−1) , {d : Ω→ ZI ,Fτk −measurable, d(ω) 6= ξk−1(ω)},

denotes the set of allZI -valued,Fτk -measurable random variables that are a.s. different fromξk−1 (in order

to be able to callτ1 truly a switching time). Second, the manager is not allowed to make “too many” changes.

Formally, an acceptableξ should be finite in the sense thatP[τk < T ∀k] = 0. Because potential operational

profits are finite while switching costs are strictly positive, a strategy with an infinite number of switches is

sub-optimal anyway. For any stopping timeτ , we designate by

U(τ, T ) = {ξ : F-adapted,ZI -valued right continuous process ofP-a.s. finite variation on[τ, T ]} ,(2.4)

the set of all admissible operational strategies betweenτ andT . Assumption 3 implies that (2.3) has a

unique strong solution on[t, T ] for eachξ ∈ U(t, T ) and any initial conditionYt = y.

Remark2. As mentioned in the introduction, management may be subject tooperational inertia: after

changing into a new regimei one must wait some amountδi before being allowed to switch the regime

again. For instance, an oil platform has ramp-up/ramp-down periods for the pumps during which no new

action is possible. Thus, ifξk = i then we may also requireτk+1 ≥ τk + δi. The delay lengthsδi ≥ 0
are additional constraints and prevent the manager from immediately reversing a decision. To ease on

presentation we do not incorporate operational inertia at this stage, but will further explore this issue in

Section 5.5.

Summarizing, employing a strategyξ ∈ U(T1, T ) on a time interval[T1, T2] yields at dateT2 a nominal

cumulative revenue of

BT1,T2(ξ) ,
∫ T2

T1

er(T2−s)ψξs(s, Ys) ds−
∑

k≥1: τk−1<T2

er(T2−τk)Cξk−1,ξk .(2.5)

For the strategyξs ≡ i always using regimei, we will writeBT1,T2(i) ,
∫ T2

T1
er(T2−s)ψi(s, Ys) ds. Also for

later use we note that for the first switching timeτ1 of a controlξ with ξT1 = i we have:

BT1,T2(ξ) =
∫ τ1

T1

er(T2−s)ψξs(s, Ys) ds− er(T2−τ1)Ci,ξ1 +
∫ T2

τ1

er(T2−s)ψξs(s, Ys) ds−
∑
k≥2

τk−1<T2

er(T2−τk)Cξk−1,ξk

= er(T2−τ1)(BT1,τ1(i)− Ci,ξ1) +Bτ1,T2(ξ).

(2.6)

2.2. Financial Hedging Strategies.In contrast to operational policiesξ which are essentially discrete, a

financial trading strategyπ is a continuous control. Letπt denote the dollar amount of contractSt held at

timet, with the remainder invested in the savings account. LetXt denote the current wealth in the possession



FINANCIAL HEDGING OF OPERATIONAL FLEXIBILITY 7

of the firm at timet. Given an initial endowment ofx, the outcome of any combined strategy(π, ξ) is a

wealth process(Xt ≡ Xt,x,π,ξ
t )t≥0 which obeysXt,x,π,ξ

t = x and

dXt,x,π,ξ
u = πu

dSu
Su

+ ru(Xt,x,π,ξ
u − πu) du+ ψξu(u, Yu) du−

∑
k≥1

Cξk−1,ξk1τk=u.(2.7)

BecausedSt
St

= µ(t) dt + σ(t) dW 1
t , the traded futures priceSt drops out from (2.7) and is omitted from

future analysis.

LetMS , {Q � P : EQ[ln dQ
dP ] < ∞, {e−rtSt} is aQ-martingale} 6= ∅ be the non-empty set of all

martingale measures with finite relative entropy. To exclude arbitrage and make sure that (2.7) is well-

defined we require

π ∈ A(t, T ) ,
{

(πs ≡ π(s, Ss, Xs, Ys))t≤s≤T :
∫ ·

t
πs

dSs
Ss

is aQ-supermartingale∀Q ∈MS
}
.(2.8)

The motivation for the above choice is to have additivity of the admissible financial hedging policy sets

A(t, s): for any F̃-stopping timeτ , if π(1), π(2) ∈ A(t, T ) then so is1t<τπ
(1)
t + 1t>τπ

(2)
t ∈ A(t, T ).

Observe that for this to occur,A(t, T ) must be independent of initial wealthx and the operational strategy

ξ. This is one reason why wealth/trading constraints are difficult to incorporate in our framework and why

we do not impose the usual constraint of no-bankruptcyXt,x,π,ξ ≥ 0 (in which case the choice of production

strategyξ would influence admissibility ofπ).

2.3. Optimization Problem. We are finally ready to define the optimization problem. Let

U(w) = − exp(−γw), γ > 0.

This is the well-known exponential utility with Constant Absolute Risk Aversion (CARA) parameterγ =
U ′′(w)
U ′(w) . It has been widely used in portfolio optimization literature, see e.g. Carmona and Danilova (2003),

Henderson (2005), Ilhan et al. (2006), Miao and Wang (2007), Musiela and Zariphopoulou (2004), Stoikov

and Zariphopoulou (2005), Zariphopoulou (2001). Further reasons for choosing exponential utility in our

model are discussed in Section 3.3. The manager’s control problem is to maximize the expected future utility

of terminal wealthV : [0, T ]× R+ × R× ZI → R, over all admissible operating and hedging strategies,

V (t, y, x, i) = sup
π∈A(t,T )
ξ∈U(t,T )

Et,x,y,i
[
U(Xt,x,π,ξ

T )
]
,(2.9)

whereEt,x,y,i[·] , E
[
·
∣∣Yt = y,Xt = x, ξt = i

]
denotes conditional expectation under the physical measure

P given the state variables at timet. Problem (2.9) assumes for simplicity that the terminal salvage value is

zero; a general residual value of the formG(YT ) can be easily added. It is well-known that because opera-

tional gains are uniformly bounded, for everyπ ∈ A(t, T ) the family{exp(−γXt,x,π,ξ
τ )}τ∈S is uniformly

integrable and therefore the solution of (2.9) is well-defined and finite. Note that for exponential utility, one

may equivalently work with the smaller set of admissible strategies,

H(t, T ) =
{
(π, ξ) : (Xt,x,π,ξ

s ) is uniformly bounded from below (ins, ω)
}
.
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2.4. Indifference Value of Operational Flexibility. Let

U0(t, x) , sup
π∈A(t,T )

Et
[
U(Xt,x,π

T )
]
,(2.10)

denote the value function when the business is not present and the company only engages in financial trading.

In this case the evolution of the wealth process is simply

Xt,x,π
u = x+

∫ u

t
πs

dSs
Ss

+
∫ u

t
rs(Xt,x,π

s − πs) ds,(2.11)

and we have a standard Merton problem of portfolio optimization. The value of having control of the

business on[t, T ] is p ≡ pt,T (y, x, i), where theindifference valuep satisfies

V (t, y, x, i) =: U0(t, x+ p).(2.12)

In other words,pt,T (y, x, i) denotes the initial increase in wealth that balances out relinquishing operational

control subject to the given initial conditions. Hence, the agent is indifferent between receivingpt,T (y, x, i)
dollars immediately or being granted management privileges untilT .

Remark3. Conversely, assuming the point of view of a firm preparing to start financial hedging, we can also

assign an indifference value for having access to new financial markets. Namely, defining

V̂ (t, y, x, i) , sup
ξ∈U(t,T )

Et,y,i
[
U
(
xer(T−t) +Bt,T (ξ)

)]
= e−γe

r(T−t)x · sup
ξ∈U(t,T )

Et,y,i
[
−e−γBt,T (ξ)

]
(2.13)

to be the expected profit from just managerial control, the value of financial hedging is the amountp̂ ≡
p̂t,T (y, x, i) that solvesV (t, y, x, i) =: V̂ (t, y, x+ p̂, i). We studyp̂ in Section 3.4.

3. METHOD OFSOLUTION

The double optimization in (2.9) and the presence of four state factors should testify to the complexity

of our problem. Note that the model is also non-time-homogeneous. This is a key feature of practical

applications, not only because of the finite planning horizonT , but also due to inherent seasonality in

commodity markets. Nevertheless, thanks to the special structure it is possible to separate the financial

hedging and operational management problems and obtain an efficient solution algorithm.

The key simplification occurs because the manager’s preferences are over terminal wealth and interme-

diate income does not affect availability of trading strategies. As a result the problem can be reduced to one

where the entire cumulative revenueBt,T (ξ) of (2.5) is received atT . Indeed, one can re-write (2.7) as

Xt,x,π,ξ
T = er(T−t)x+

∫ T

t
er(T−u)πu

(
dSu
Su
− rudu

)
+
∫ T

t
er(T−u)

(
ψξu(u, Yu)−

∑
k≥1

Cξk−1,ξk1τk=u

)
du

= er(T−t)x+
∫ T

t
er(T−u)πu (dSu/Su − rudu) +Bt,T (ξ)

= Xt,x,π
T +Bt,T (ξ),(3.1)

with theXt,x,π from (2.11).



FINANCIAL HEDGING OF OPERATIONAL FLEXIBILITY 9

3.1. Separation Principle. Fixing ξ and making use of (3.1) we see that (2.9) is related to the problem

of utility maximization with random endowment. In particular, we recall the following lemmas regarding

optimal investment in the incomplete(S, Y ) market due to Tehranchi (2004) and Owen andŽitković (2007).

Let

Mt,T ,
1− ρ2

2

∫ T

t

(µ(s)− r)2

σ(s)2
ds.(3.2)

The quantityMt,T is related to the Girsanov measure change fromP to the minimal martingale measureQ:

dQ
dP

= −
∫ T

0

ρ(µ(s)− r)
σ(s)

dW 1
s −

∫ T

0

ρ2(µ(s)− r)2

2σ(s)2
ds.

The measureQ ∈ MS is characterized by the property that it makes{e−rtSt} into a martingale while

unaffecting the law ofW 2. It also minimizes the relative entropy with respect toP among all measures in

MS . Thus, theQ-market price of risk associated toW 1 is the familiar Sharpe ratio(µ(t)− r)/σ(t) and the

market price of risk associated toW 2 is zero. It follows that underQ,{
dSt = St(r dt+ σ(t) dW̃ 1

t ),

dYt =
(
a(Yt)− ρµ(t)−r

σ(t) b(Yt)
)

dt+ b(Yt) · (ρdW̃ 1
t +

√
1− ρ2 dW̃ 2

t ),
(3.3)

where(W̃ 1, W̃ 2) is a pair of independentQ-Brownian motions. For typographical convenience we will

denote the expectation under the measureQ asĒ ≡ EQ.

LetB be a boundedFT -measurable random variable and consider the utility maximization problem for

random endowmentB, U(x;B) , supπ∈A(0,T ) E
[
− exp(−γ(Xt,x,π

T +B))
]
.

Lemma 1. Tehranchi (2004, Theorem 3.2) Suppose|ρ| < 1.

(a) LetpB = exp(−γ(1− ρ2)B −M0,T ). The functionU(·;B) is given by

U(x;B) = − exp(−γerTx) · Ē[pB]
1

1−ρ2 ;(3.4)

(b) An optimal strategy forU(x;B), π∗(B) exists and is equal to

π∗(B)t =
1
γ

µ(t)− r
σ(t)2

e−r(T−t) +
ρe−r(T−t)

γ(1− ρ2)σ(t)
βt

Ē[pB|Ft]
,

where(βt) is the integrand in theQ-martingale representation ofpB,

pB = Ē[pB] +
∫ T

0
βs(ρdW̃ 1

s +
√

1− ρ2 dW̃ 2
s ).

Lemma 2. Owen andŽitkovíc (2007, Theorem 4.1,5.1) Moreover,U satisfies the following properties

(a) Dual optimality: the optimal wealth process{Xt,x,π∗
u } is aQ-martingale;

(b) Monotonicity: ifB1 ≤ B2 P-almost surely thenU(·;B1) ≤ U(·;B2);
(c) Concavity: givenλ ∈ [0, 1] and two claimsB1, B2 we haveU(·;λB1 + (1 − λ)B2) ≥ λU(·;B1) +

(1− λ)U(·;B2);
(d) Lebesgue Continuity: if(Bn) are uniformly bounded andBn → B P-almost surely, thenU(·;Bn)→

U(·;B).
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Lemma 1 can be used to obtain a solution to the financial trading aspect of (2.9), allowing us to focus on

the operational flexibility component. Indeed, forσ ∈ S, let

ασ , γ(1− ρ2)er(T−σ).

Proposition 1. Suppose|ρ| < 1. The value functionV satisfies

V (t, y, x, i) = exp
(
−γer(T−t)x−

Mt,T

1− ρ2

)
· sup
ξ∈U(t,T )

{
Ē
[
− exp(−αTBt,T (ξ))

∣∣∣Yt = y, ξt = i
] 1

1−ρ2

}
,

(3.5)

and the corresponding indifference value solves

pt,T (y, i) = sup
ξ∈U(t,T )

−1
αt

ln Ē
[
exp(−αTBt,T (ξ))

∣∣∣Yt = y, ξt = i
]
.(3.6)

The indifference value is independent from initial wealth levelXt = x, a pleasing fact that allows valuation

without worrying about the current cash position of the firm. The case|ρ| = 1 is considered in Section 3.4.

Proof. Fix ξ ∈ U(t, T ) and denote by

V ξ(t, x, y, i) = sup
π∈A(t,T )

Et,x,y,i
[
U(Xt,x,π,ξ

T )
]

= sup
π∈A(t,T )

Et,y,i
[
− exp

(
−γ(Xt,x,π

T +Bt,T (ξ))
)]
,

using (3.1). Then from (2.5) and Assumptions 1-2,|Bt,T (ξ)| ≤ (T − t)er(T−t)Cψ is aFT -measurable

bounded random variable and by Lemma 1,

V ξ(t, x, y, i) = exp
(
−γer(T−t)x−

Mt,T

1− ρ2

)
· Ē
[
− exp(−αTBt,T (ξ))

∣∣∣Yt = y, ξt = i
] 1

1−ρ2
.

Hence,

V (t, y, x, i) = sup
ξ∈U(t,T )

V ξ(t, y, x, i)

= exp
(
−γer(T−t)x−

Mt,T

1− ρ2

)
· sup
ξ∈U(t,T )

{
Ē
[
− exp(−αTBt,T (ξ))

∣∣∣Yt = y, ξt = i
] 1

1−ρ2

}
.

If there is no production thenB ≡ 0, and we obtainU0(t, x) = − exp(−γer(T−t)x − Mt,T

1−ρ2 ) in (2.10).

Comparing with (2.12), we find

− exp
(
−γer(T−t)pt,T (y, i)

)
= sup

ξ∈U(t,T )

{
Ē
[
− exp(−αTBt,T (ξ))

∣∣∣Yt = y, ξt = i
] 1

1−ρ2

}
,

which after simplification leads to (3.6). �

3.2. Dynamic Programming Principle. Sinceξ is an impulse control, one expects thatV andp, which

respectively satisfy (3.5) and (3.6), satisfy a dynamic programming equation. In this section we rigorously

establish this fact which reduces to a series of optimal stopping problems and is then used in Section 4

for numerical computations. The results below resemble existing literature on impulse control, see e.g.

El Karoui (1981), Lepeltier and Marchal (1984), Dayanik and Egami (2004). However, because we have a

multiplicative- rather than the typical additive-cost structure some adjustments are needed, and we present

full proofs for completeness in the Appendix.
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To begin solving (3.6) we first consider a sequence of restricted control problems. For any stopping time

σ ∈ S, letUk(σ, T ) be the set of all production policies that use at mostk switches betweenσ andT :

Uk(σ, T ) , {ξ = (σ, ξ0, τ1, ξ1, τ2, ξ2, . . . , τk, ξk) : τi ∈ S(τi−1), ξi ∈ D(τi, ξi−1), i = 1, . . . , k} ,

and define

φ0(σ, Yσ, i) , Ē
[
− exp(−αTBσ,T (i))

∣∣Fσ] ,(3.7)

φk(σ, Yσ, i) , ess sup
ξ∈Uk(σ,T ),ξσ=i

Ē
[
− exp(−αTBσ,T (ξ))

∣∣Fσ] , k = 1, 2, . . . .(3.8)

The fact that the left hand sides are a function ofYσ follows from the (strong) Markov property of{Yt}. Note

that at this pointφk(σ, Yσ, i) is defined separately for eachσ (a more illuminating but cumbersome notation

would beφk(σ; i)(Yσ)), so a priori it is not at all clear what kind of regularity holds for{φk(·, Y·, i)}σ∈S .

The next lemma shows thatφk satisfy a recursion formula.

Lemma 3. For all k ≥ 1, σ ∈ S, i ∈ ZI we have

φk(σ, Yσ, i) = ess sup
τ1∈S(σ),ξ1∈D(τ1,i)

Ē
[
exp
(
−ατ1(Bσ,τ1(i)− Ci,ξ1)

)
· φk−1(τ1, Yτ1 , ξ1)

∣∣∣Fσ] .(3.9)

The following lemma proves the regularity ofφk and implies that (3.9) is a pure optimal stopping problem.

Lemma 4. For everyk = 0, 1, . . . and i ∈ ZI , there exists a continuous, boundedF-adapted measurable

processφ̄k,i, such thatφk(σ, Yσ, i) = φ̄k,iσ , the process̄φk,i evaluated at stopping timeσ.

Thanks to Lemma 4, we may apply the general theory (El Karoui 1981) of optimal stopping to the Snell

envelope of (3.9). This implies that an optimal control exists and gives the following explicit characterization

of the solution:

Corollary 1. The supremum in the optimal stopping problem(3.9) for φk is achieved for τ∗ = inf{s > σ : φk(s, Ys, i) = max
j∈ZI\{i}

(φk−1(s, Ys, j) · exp(αsCi,j))},

ξ∗ = min{j ∈ ZI \ {i} : φk(τ∗, Yτ∗ , i) = φk−1(τ∗, Yτ∗ , j) · exp(αsCi,j)}.
(3.10)

To relate the previous developments to our indifference values, we define the operatorG : C∞([0, T ] ×
R+ × ZI)←↩ by

Gw(t, y, i) , sup
τ1∈S(t),ξ1∈D(τ1,i)

−1
αt

ln Ēt,y,i
[
exp
(
−ατ1

[
Bt,τ1(i)− Ci,ξ1 + w(τ1, Yτ1 , ξ1)

])]
.(3.11)

It is easy to check thatG is an increasing bounded operator, which is moreover continuous in the supremum

norm. We now iteratively setp0(t, y, i) , − 1
αt

ln(−φ0(t, y, i)) and pk+1(t, y, i) , Gpk(t, y, i), k =
0, 1, . . ..

Lemma 5. We haveφk(t, y, i) = − exp(−αtpk(t, y, i)).

Comparing with (3.8) and (3.6) we see thatpk(t, y, i) is therefore equal to the indifference value of

production on[t, T ] under the constraint that at mostk managerial regime switches are possible. Note that

pk(t, y, i) is now defined in terms of the recursive optimal stopping problem (3.11), rather than an impulse

control problem of (3.8). In the next section we will take advantage of this fact to compute the unconstrained

indifference valuept,T (y, i).
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3.3. Iterative Property of p. In (3.11) we have constructed a series of optimal stopping problems for the

indifference valuepk(t, y, i) of the restricted control problem corresponding to (3.8). We now show that in

the limit k →∞ this produces a solution to the original problem (3.6).

Proposition 2. The sequence(pk) is increasing and ask →∞ converges pointwise top of (3.6).

lim
k→∞

pk(t, y, i) = pt,T (y, i).

Moreover, the indifference valuept,T is a fixed point of the operatorG: Gpt,T (y, i) = pt,T (y, i), so thatpt,T
satisfies the dynamic programming equation

pt,T (y, i) = sup
τ∈S(t),
ξ1∈D(τ,i)

−1
αt

ln Ēt,y,i
[
exp
(
−ατ

[∫ τ

t
er(τ−s)ψi(s, Y i

s ) ds− Ci,ξ1 + pτ,T (Y i
τ , ξ1)

])]
.(3.12)

Finally, pt,T (·, i) is locally Lipschitz iny and uniformly bounded on(t, y) ∈ [0, T ]× R+.

The unusual property of the effective risk aversion parameterαt = γ(1 − ρ2)er(T−t) increasing as we

move backwards in time is to account for time-value of money. Since all cashflows are stated innominal

terms, early on the manager is more risk-averse because opportunity costs are higher initially. For instance,

the relative cost of payingCi,j is higher for smallt when available capital can be invested profitably for a

long time. The above proposition immediately implies

Corollary 2. An optimal joint strategy(ξ∗, π∗) for pt,T (y, i) exists and is explicitly given by:τ∗0 = t, ξ∗0 = i

and 

τ∗k+1 = inf{s > τ∗k : ps,T (Ys, ξ∗k) = max
j∈ZI\{ξ∗k}

(ps,T (Ys, j)− Cξ∗k,j)},

ξ∗k+1 = min
{
j ∈ ZI \ {ξ∗k} : pτ∗k+1,T

(Yτ∗k+1
, ξ∗k) = pτ∗k+1,T

(Yτ∗k+1
, j)− Cξ∗k,j

}
,

π∗t = −ρb(Yt)
σ(t)

∂Y pt,T (Yt, ξ∗t ).

(3.13)

Proof. The structure of optimalξ∗ follows from the representation (3.12) and the corresponding coupled

optimal stopping problem. The optimal financial hedging strategyπ∗ , πV − π0 is defined to be the dif-

ference between the optimalπV of (3.5) and the optimalπ0 of (2.10). The latter is known to be (Henderson

2005) the constant1γ
µ(t)−r
σ(t)2

e−r(T−t), and the former is obtained by applying the second item of Lemma 1 to

(3.12). Thus, using the notation of Lemma 1,

π∗t = ρe−r(T−t)/(γ(1− ρ2)σ(t)) · βt/Ē
[
pBt,T (ξ∗)

∣∣Ft].
By Assumption 3, the stochastic flowy → Y y(ω) is a diffeomorphism (Øksendal 1998). Coupled with

the differentiability ofψi’s, this implies that for any fixedξ ∈ U(t, T ), the mapy → Ēt,y,i[exp(−γ(1 −
ρ2)Bt,T (ξ))] is locally Lipschitz. Finally, applying the Clark-Ocone formula gives the representation ofπ∗

in terms of the (generalized) partial derivative ofpt,T , see e.g. a similar expression in Henderson (2005).�

Thus, for the first optimal switching timeτ , the current indifference value of managerial control is equal

to the exponential certainty equivalent of best immediate rewardBt,τ (i) plus the future indifference value

of remaining control over[τ, T ]. An easy generalization of (3.12) shows that, moreover

pt,T (y, i) = sup
ξ∈U(t,T )

−1
αt

ln Ēt,y,i
[
exp
(
−ασ(Bt,σ(ξ) + pσ,T (Yσ, ξσ))

)]
,
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for anyσ ∈ S(t). Consequently,pt,T is additivein time in the sense that there is a functionalF such that

pt,T = F (Bt,σ + pσ,T ). A similar observation was made in Carmona and Danilova (2003, Section 4) in

the context of indifference pricing of a portfolio of options with different expiration dates. This remarkable

property is the major reason for our selection of exponential utility. As shown by Cheridito and Kupper

(2006), it is the only such example in the framework of expected utility maximization with allowable neg-

ative wealth. Note that additivity is natural and allows the manager to carry out ‘local’ optimization when

choosing her production levels; this also trivially holds in (1.1). To numerically implement this algorithm

it remains to evaluate the coupled optimal stopping problems appearing in the construction ofpt,T (y, i) in

(3.12). This is taken up in Section 4.1 using ideas from American option pricing.

The overall structure of Corollary 2 is reminiscent of problems of optimal investment with discretionary

stopping (Karatzas and Wang 2000): the manager should optimally hedge her{Yt}-income in the{St}-
market and then at her discretion “stop”, i.e. switch to a different regime and proceed recursively.

Before continuing, let us briefly summarize the effect of model parameters on the indifference value

pt,T (y, i). All these results follow easily from the monotonicity and concavity properties ofU(x;B) in

Lemma 2 and from the representation (3.6).

Corollary 3. The following properties hold for the indifference valuept,T (y, i):
(a) pt,T (y, i) is increasing inψi(t, y) for anyi (ψi measures the operational profitability of the firm).

(b) pt,T (y, i) is non-increasing in switching costsCi,j .

(c) pt,T (y, i) is decreasing in the risk-aversion parameterγ.

(d) pt,T (y, i) is increasing in the correlationρ between the traded and production assets.

The effect of the volatilityb(y) of the production priceY onpt,T is ambiguous. While volatileY increases

opportunities to be in high-value regimes, it also increases day-to-day risk and may lead to more frequent

switching costs. Thus, the overall impact ofb(y) depends on the ensemble ofψi’s andCi,j ’s, as well as on

the parameters of the(S, Y )-dynamics.

Remark4. The concurrent work carried out by Porchet et al. (2007) also studies (2.9). However, in that paper

the authors characterizeV andp as solutions of a system of reflected quadratic BSDEs. In particular, this

allows to introduce a certain class of trading constraints for the manager and consider a multi-dimensional

setting. The resulting model requires more delicate handling and in Porchet et al. (2007) the main thrust

of the paper is therefore proving the existence and uniqueness results related topt,T andV using analytic

BSDE tools. This contrasts with the direct probabilistic method we employ which effectively sidesteps

the problem of optimal investment. Because of the different methods, the technical assumptions on state

variables and admissible controls made here and in Porchet et al. (2007) are also slightly different.

While we establish the dynamic programming principle forpt,T directly in (3.12), Porchet et al. (2007)

only prove the corresponding result for the value functionV . Because of their more general model, they

cannot explicitly separate the trading and managerial controls and their version of the Bellman equation

does not directly translate into an easily implementable numerical method. As a result, compared to this

study, Porchet et al. (2007) devote much less space to illustrations and comparative statics.

3.4. Limiting Cases. To better understand the mechanics of (3.6) we consider two limiting cases. The first

limiting case isρ = 1, which corresponds to a complete market. Whenρ = 1, the asset ‘Y’-cashflows are

perfectly correlated with the market benchmark{St}. Consequently, the cumulative asset profitBt,T (ξ) can
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be replicated using a trading strategy in{St}. Thus, intuition suggests that risk-neutral pricing should be

applied. Indeed, in that case, as shown by Henderson (2005),U(x;B) = − exp
(
− γerT (x + Ē[B]) −∫ T

t
(µ(s)−r)2

2σ(s)2
ds
)

. Thereforept,T (y, i) = supξ∈U(t,T ) Ēt,y,i [Bt,T (ξ)] and the recursive version is

pt,T (y, i) = sup
τ∈S(t),ξ1∈D(τ1,i)

Ēt,y,i
[
er(t−τ)

{∫ τ

t
er(τ−s)ψi(s, Ys) ds− Ci,ξ1 + pτ,T (Yτ , ξ1)

}]
.(3.14)

This is precisely the continuous-time version of the original (1.1) adjusted to take into account operational

constraints. Such problems have been solved in the optimal switching literature, see e.g. Zervos (2003) and

Carmona and Ludkovski (2005). Compared with (3.12), (3.14) can be seen as a linearization that arises in

the absence of market incompleteness. Conversely, the introduction of a nonlinear transformation in (3.12)

is to account for imperfect hedging opportunities and corresponds to the concept ofnonlinear conditional

expectationsin Musiela and Zariphopoulou (2004). This nonlinearity adjusts the expected future profits in

order to separate the hedgeable and non-hedgeable components.

At the other extreme, whenρ = 0, the local asset price{Yt} evolves independently of the market bench-

mark {St}. Intuitively that should make financial hedging impossible. Indeed, plugging-inρ = 0 into

(3.13) we getπ∗t = 0. Thus, since it is impossible to hedge operations, the manager does not make any extra

investments in the{St}-market in the presence of the asset.

The caseρ = 0 is also related to the value of financial hedging mentioned in Remark 3. Indeed, solving

for the gain from financial hedginĝpt,T (y, i) and observing that the supremum in (2.13) is the same as that

in (3.5) whenρ = 0, we find

p̂t,T (y, i) = Mt,T /αt +
(
pt,T (y, i)− p(ρ=0)

t,T (y, i)
)
.

Thus, the value of access to the{St}-market decomposes into (a) expected direct gains from trading in the

reference{St}-contract and (b) increased value of operational income thanks to reduced risk.

3.5. Discrete Time Formulation. To be able to compare the value obtained from (3.12) to the original

(1.1), one needs to consider a discrete formulation where the manager is required to make switches at

pre-specified times belonging toS∆ , {0,∆t, 2∆t, · · · , T = M∆t}. This means that operating mode

decisions are made every∆t time units, for example once a day (so that∆t = 1
365 ), analogous to the

distinction between American and Bermudan exercise rights for a vanilla option. The discrete-time version

will also be used in the numerical implementation of Section 4.

Let U(t, T ) ⊇ U∆(t, T ) = {ξ : τk ∈ S∆} denote the corresponding set of discretized operating

strategies. Now ifξ ∈ U∆(t, T ), no operational control is possible betweent and t + ∆t so the op-

timal stopping problems forp reduce to a sequence of one-period decisions. Formally, letp∆
t,T (y, i) =

supξ∈U∆(t,T )
−1
αt

ln Ēt,y,i [exp(−αTBt,T (ξ))] denote the valuejust beforetime t. Then a production regime

decision may be madeimmediatelyat t or one must wait until (just before)t+ ∆t, so that by analogy with

(3.12) we obtain

p∆
t,T (y, i) = max

j∈ZI

−1
αt

ln Ēt,y,j
[
exp
(
−αt+∆t[p∆

t+∆t,T (Yt+∆t, j) +Bt,t+∆t(j)− er∆tCi,j ]
)]
.(3.15)

Note that (3.15) has a deterministic optimization over all the possible regime selections since the corre-

sponding decision is made “today”. This was the rationale for looking at values just before switching

opportunities.



FINANCIAL HEDGING OF OPERATIONAL FLEXIBILITY 15

Remark5. The effect of∆t on the indifference valuep∆
t,T is small. For regular optimal stopping problems

Dupuis and Wang (2005) showed that the corresponding error is of orderO(
√

∆t) and same bound was

obtained in a linear optimal switching problem in Carmona and Ludkovski (2005). Numerically in the

examples below we found the effect to be negligible, being less than1% between∆t = T/100 and∆t =
T/800.

4. NUMERICAL IMPLEMENTATION

4.1. Regression Monte Carlo Method.Since we allow generalY -dynamics in (2.3) and general cashflow

ratesψi(t, y) a closed-form solution to (3.6) and (3.12) cannot be expected. Therefore we must resort to

numerical methods. To do numeric computations, time must be discretized, so that we continue to work

with the discrete setS∆ = {m∆t}Mm=0 and the corresponding set of operating strategiesU∆. Let t1 =
m∆t, t2 = (m + 1)∆t be two generic consecutive time steps. As shown in the previous section, finding

the indifference value of the production assetp∆
t1,T

(y, i) hinges on iteratively computing (3.15), which is a

distorted conditional expectation of futurep∆
t2,T

(·, ·).
To compute (3.15) we shall use a finite-dimensional projection. Let

Et1 [i, j](y) , Ē
[
exp

(
− αt2(p∆

t2,T (Yt2 , j) +Bt1,t2(j)− er∆tCi,j)
)∣∣∣Yt1 = y, ξt1 = j

]
.(4.1)

We shall approximate this conditional expectation with a projection operatorÊt1 [i, j](y) ' Et1 [i, j](y)
defined by

Êt1 [i, j](y) ,
NB∑
`=1

α∗`B`(y),(4.2)

with B`(y) being theNB basis functions inL2(R+,Ft1) andα∗` theR-valued coefficients chosen to mini-

mize the squared projection error:

α∗ = arg min
(α′1,...,α

′
NB )

∥∥∥ NB∑
`=1

α′`B` − Et1 [i, j]
∥∥∥2

L2(R+)
.

The canonical choice is to takeB` ≡ B̃`(Ft1), ` = 1, . . . , NB where{B̃`}∞`=1 is a complete orthonormal

family in L2(R+), e.g. the Hermite polynomials (Longstaff and Schwartz 2001). Empirically, choice of

{B`} greatly affects algorithm variance and customizing the basis functions to resemble the expected shape

of the functionpt,T (·, i) is desirable. Because we regress expressions of the formexp(−αtg̃(Yt)), we pick

basis functions of the same formB`(y) = exp(−αtg`(y)), whereg`(y) are polynomials. Having five or

six basis functions,NB = 6, normally suffices, and having more bases can often lead to worse numerical

results due to overfitting. The exponential transformation inside (4.1) causes some numerical instability,

especially as it may produce very small values where round-off errors become a concern.

The projection operator̂Et1 [i, j] can be in turn approximated with anempirical regressionbased on a

Monte Carlo simulation. This replaces the optimalα with sampleα̃. The Monte-Carlo simulation begins

by generating for eachi ∈ ZI Np sample paths{yn,im∆t} of the{Y i
t } process (recall that this is the ‘Y’-price

dynamics conditional on the controlξt ≡ i), with a fixed initial conditionyn,i0 = y = Y0. If ξ does not

influence{Yt}, then we can use the same set of paths{ynm∆t} to compute all the conditional expectations.

We will approximate the overall indifference value by the empirical averagep0,T (y, i) ' 1
Np

∑
n p(0, y

n,i
0 , i).

Denote the one-period gains bỹBm∆t(y
n,i
m∆t, i) which are the sample realizations of (approximation to)
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m∆t exp(r(t + ∆t − s)) · ψi(s, Y i

s ) ds conditional on starting valueYm∆t = yn,im∆t. The pathwise

valuesp(m∆t, yn,im∆t, i) are computed recursively in a backward fashion, starting withp(T, yn,iT , i) = 0. At

stept1, we regress the time-t2 pathwise values corresponding toEt1 [i, j] onto the basis functionsB`(y
n,j
t1

),
i.e. we findα̃`(t1), ` = 1, . . . , NB minimizing

α̃(t1) = arg min
α∈RNB

Np∑
n=1

(
NB∑
`=1

α` ·B`(yn,jt1 )− exp
(
−αt2(p(t2, y

n,j
t2
, j) + B̃t1(y

n,j
t1
, j)− er∆tCi,j)

))2

.

(4.3)

After determining̃α(t1), this yields a prediction̂Et1
[
i, j
]
(yn,it1 ) for the “continuation value” along the(n, i)-

th path if an immediate switch to production regimej is taken. Note that the regression uses the paths

from thej-regime, but the conditional expectation is evaluated on the paths in thei-regime. The optimal

operational decision is made by identifying the index that maximizesÊt1 [i, ·]:

ξn,it1 = arg max
j

Êt1
[
i, j
]
(yn,it1 ),(4.4)

so that the set{n : ξn,im∆t 6= i} identifies all the paths where switching from regimei att = m∆t is beneficial.

The overall recursivepathwiseconstruction forp is therefore

p(m∆t, yn,im∆t, i) =

{
− 1
αm∆t

ln Êm∆t[i, i](y
n,i
m∆t) no switch;

− 1
αm∆t

ln Êm∆t[i, j](y
n,i
m∆t) switch toj.

(4.5)

We call the above scheme Regression Monte Carlo. It was first proposed by Tsitsiklis and Van Roy (2001)

in the context of American option pricing. Note that the basic projection method does not guarantee thatÊt1
will be positive, which is a problem given the reverse log-transformation in (4.5). To overcome this issue,

one can use a constrained projection or the following more robust method.

4.2. Simulating Optimal Realized Gains. The numerical algorithm of Section 4.1 can be improved by

exploiting a device first mentioned by Longstaff and Schwartz (2001). Instead of keeping track of the

pathwisept,T we keep track of pathwiserealized gains. Let bn,im∆t be sample pathwise realizations of

e−r(T−m∆t)Bm∆t,T (ξ∗). Sincept,T (y, i) = −1/αt ln Ēt,y,i[exp(−αTBt,T (ξ∗))], bn,im∆t are proxies for

p(m∆t, yn,im∆t, i) in the previous section. However, applying (2.6) to the discrete-time version of Section

3.5, we obtain as the analogue of (3.15)

e−r(T−t1)Bt1,T (ξ∗) = e−r∆tBt1,t2(ξ
∗
t1)− Cξ∗t1 ,ξ∗t2 + e−r∆te−r(T−t2)Bt+∆t,T (ξ∗),

which implies the simpler update rule

bn,im∆t =

{
e−r∆t(bn,i(m+1)∆t + B̃m∆t(y

n,i
m∆t, i)) no switch;

e−r∆t(bn,j(m+1)∆t + B̃m∆t(y
n,i
m∆t, j))− Ci,j switch toj.

(4.6)

The switching decision is made in direct analogue to (4.1) by replacingp(·, yn,im∆t) with bn,im∆t in (4.3) and

using the corresponding version ofξn,im∆t of (4.4). We start withbn, iT = 0 and after backward recursion

report at timet = 0 p0,T (y, i) ' − 1
α0

ln
(

1
Np

∑
n exp(−αT bn,i0 )

)
.

Accordingly, we use the conditional expectations solely to decide whether a switch is optimal or not, and

propagate back the pathwise profitsbn,it based on these decision. Consequently, the projection error only has

effect to the extent that it implies a wrong switching decision; as long as the operational policy is correct,

the pathwise realized gain is computed exactly. This device avoids the non-negativity constraint onÊt1 and
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eliminates intermediate projection errors. It also highlights the fact that the performance of the simulation

algorithm depends on the accuracy of the constructed approximately optimal operational policy.

4.3. Error Analysis and Alternative Methods. Before proceeding to numerical examples, let us make a

few remarks regarding algorithm performance. The numerical analysis of the algorithm is complicated due

to several layers of necessary approximations. In particular, because the empirical projectionsÊm∆t[i, j]
use the same set of Monte Carlo paths for differentm∆t’s, the resulting errors are correlated. Moreover,

while the approximated projection̂Em∆t is a global operator depending on the cross section of all the

pathwise values atyn,im∆t, the Monte Carlo sampling error produces for eachn an individual local error in

p(m∆t, yn,im∆t, i) (or bn,im∆t). This error is propagated back in a nonlinear fashion as it causes fluctuations in

α̃ for earlier (in time) regressions.

A complete error analysis for our algorithm remains an open problem. Nevertheless, the widely docu-

mented success of the Longstaff and Schwartz (2001) methodology and its variants (Andersen and Broadie

2004, Carmona and Ludkovski 2005, Gobet et al. 2005), as well as stable numerical behavior in the exam-

ples below should be compelling empirical evidence regarding the performance of the approach. Moreover,

the suggested scheme is not the only possibility, as many other methods are available to approximate the

conditional expectation of (4.1). In particular, let us mention the Markov Chain approximation method

(Kushner and Dupuis 2001), the optimal quantization method (Bally et al. 2005) and the kernel regression

method (Gÿorfi et al. 2002). The first two of these methods discretize the dynamics of{Yt} and replace

them with a discrete-state Markov chain{Ỹt}. Once this is done, conditional expectations can be computed

via the standard lattice methods. The last approach evaluates (4.1) using the fully non-parametric kernel

regressor rather than a pre-selected set of basis functions. Each of the above methods has its own strengths

and shortcomings and full numerical comparison is beyond the scope of this paper. We chose the method of

Section 4.2 for its intuitive probabilistic structure, ease of implementation and current popularity; the jury is

still out whether this is the most numerically efficient and stable approach.

From a practical point of view, the main computational parameter is the number of pathsNp. Heuristi-

cally,Np must grow exponentially in number of basis functionsNB. The dependence on∆t is unknown,

but as documented above, changes in∆t have little impact onp∆, so∆t can be taken as fixed. The overall

algorithm complexity isO(Np · (NB)3 ·∆t). Table 1 shows the standard deviation of the initial valuep0,T

as a function ofNp paths used in the simulation. We find that withNB = 6,∆t = T/364 andNp = 32000
the standard deviation inp0,T (y0, i) is less than1%, which is practically acceptable. Note that for smallNp

the algorithm seems to exhibit a consistent upward bias. With the above parameters and implementation in

Matlab, the running time was about five minutes on a stock office desktop.

5. NUMERICAL EXAMPLES

To illustrate our results, we return to our oil-platform case study and consider a representative example

involving a geometric Brownian motion model with three operational regimes,i ∈ {0, 1, 2}. Let{
dSt = 0.05St dt+ 0.4St dW 1

t , S0 = 50,
dYt = 0.05Yt dt+ 0.4Yt · (0.9 dW 1

t +
√

1− 0.92 dW 2
t ), Y0 = 50.

(5.1)

The three regimes correspond to (0) keeping the production shut down, (1) running at normal capacity of

5 million barrels/year with break-even price of $50/bbl, and (2) running at high capacity of 10 Mbbl/yr
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Number of PathsNp Meanp0,T (Y0, 0) St. Dev.p0,T (Y0, 0)

4000 9.25 3.17%
8000 9.05 2.29%
16000 8.92 1.44%
24000 8.91 1.34%
32000 8.89 0.86%
40000 8.89 0.78%

TABLE 1. Mean and Standard Deviation ofp0,T (Y0, 0) for Example 1 below. We use six

basis functionsNB = 6, ∆t = T/364 and the algorithm of Section 4.2.

with break-even price of $56/bbl. We assume that there are no other costs, so that the respective cashflow

functions (in millions of dollars) are

ψ0(y) = 0, ψ1(y) = 5(y − 50) ∧ Cψ, ψ2(y) = 10(y − 56) ∧ Cψ,

where the boundCψ is taken to be sufficiently large, e.g.Cψ = 2000. The last regime is therefore preferred

when prices are above $62/bbl,ψ2(y) > ψ1(y) ⇔ y > 62 . The numerical parameter values are meant to

roughly correspond to oil markets typical in 2007. Finally, we assume that the switching costs are given by

Ci,j = 0.25|i−j| so that it takes $250,000 to make a sequential regime change. The interest rate isr = 0.05
(so thatMt,T ≡ 0 in (3.2)) and the manager has a planning horizon of six months,T = 0.5. For simplicity,

there are no other constraints and no price impact.

With these parameter values, the classical formula (1.1) givesV̄ (Y0) = $12.37 million. In contrast,

takingγ = 0.1 we find

p0,T (Y0, 0) = 8.89, p0,T (Y0, 1) = 8.86, p0,T (Y0, 2) = 8.61.

These values were obtained by running the Monte Carlo scheme of Section 4.2 using32000 paths,364 time-

steps and six basis functions. The resulting value forp0,T had the above means and a standard deviation of

0.86%.

Thus, the classical approach overestimates the true value by nearly40%. Again, the fundamental reasons

for this overestimate are the switching costs that limit flexibility and the risk-aversion of the manager. Figure

1 shows the effect of these two factors on the indifference value of production. In particular, we find that

in the absence of risk-aversion (γ = 0 or equivalentlyρ = 1), the value would bep0,T (Y0, 0; γ = 0) =
11.60, while in the absence of switching costsCi,j = 0∀i, j, the value would bep0,T (Y0, 0;C = 0) =
9.72. The classical valuēV (Y0) corresponds to the extreme top left corner where there are no constraints

and a complete market. The top boundaryγ(1 − ρ2) = 0 of Figure 1 corresponds to a standard (risk-

neutral) optimal switching problem, see Section 3.4, and was computed using the algorithm in Carmona and

Ludkovski (2005). Further analysis of the effect ofC andγ on the problem structure is in Sections 5.2-5.3

below.

5.1. Optimal Policy. Similar to American exercise boundary for early exercise options, the optimal opera-

tional policy of (2.9) can be summarized by a switching boundary plot. The switching boundaryΓi,j(m∆t)
delineates the region where{pm∆t,T (·, i) = pm∆t,T (·, j)− Ci,j} or in terms of the notation of Section 4.1,
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FIGURE 1. Dependence of indifference valuep0,T (Y0, 0) of Example 1 on the switching

costC (we takeCi,j = C|i− j|) and the market incompleteness measureγ(1− ρ2).

the empirical region whereξn,im∆t = j. Figure 2 shows these switching boundaries for the preceding exam-

ple. For instance, starting in the ‘off’ regime 0, the optimal strategy is to switch to regime 1 as soon as (and

only then) the commodity price{Yt} reaches the lower dotted boundaryΓ0,1(t) in Figure 2. In other words,

τ1 = inf{t : Yt ≥ Γ0,1(t)} (since the algorithm is in discrete-time, one actually only usest = m∆t). Inci-

dentally, the fact thatp0,T (Y0, 2) = p0,T (Y0, 1)−C2,1 indicates that starting out in the full capacity regime,

the manager should immediately switch to normal capacity. Due to the natural ordering of the regimes in

this specific example, it can be seen that we never switch from shutdown to full production and vice versa

directly, but always go through the middle regime 1.

In the classical setting of (1.1), the switching boundaries would be straight lines at the break-even levels

of $50 and$56 per barrel. However in our model, when the price rises just above$50/bbl and the oil-

platform is shut, the manager is reluctant to start production. This is because it would entail an immediate

costC0,1 and there is uncertainty regarding futureY -prices. Instead she will wait until prices reach about

Γ0,1(t) ' $53/bbl and will start production only then. Similarly, being in regime 1, the optimal strategy is

to switch to regime 0 only once{Yt} hits the lower solid boundaryΓ1,0(t) (about$47.5) from above. Again,

this boundary is below the break-even level of$50/bbl, indicating that the manager will be willing to suffer

some small losses in the hope of eventual recovery rather than immediately incur the large switching costs.

Thus, the operational constraints and the managerial risk-aversion cause the appearance of thehysteresis

band (Dixit 1989) betweenΓ0,1(t) andΓ1,0(t) (and similarly betweenΓ1,2(t) andΓ2,1(t)). The hysteresis

bands showcase the path-dependency of the problem and the conservative attitudes of the manager. Because

the manager’s behavior is time-inhomogeneous, so are the switching boundaries. In particular, close to

terminal dateT the hysteresis bands widen dramatically since the immediate cost of making a production

mode switch dominates any possible gain to be made beforeT (recall that the residual value was assumed

to be zero).
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FIGURE 2. Switching boundaries for Example 1 in Section 5.1. The figure shows the four

relevant boundariesΓ1,0(t),Γ0,1(t),Γ2,1(t),Γ1,2(t) with γ = 0.1 as a function of timet.

The dashed boundaries represent levels for switching to a higher production regime and the

solid boundaries represent levels for switching to a lower production regime. Because the

boundaries were generated using paths that all begin withY0 = 50, for smallt none of the

paths switched to regime 2 and there is no threshold to display forΓ2,1(t) andΓ1,2(t).

Once the switching boundaries are known, the optimal production strategy is completely determined.

Namely, given a path of{Yt} one sequentially checks ifYt crosses the appropriate switching boundaries

Γi,j(t) and makes the necessary operational regime changes. Figure 3 illustrates this procedure using the

boundaries above. The top panel shows two simulated paths of{Yt} in relation to switching boundaries. The

lower panel keeps track of cumulative realized gainsB0,t(ξ∗) from the oil platforms, assuming initial regime

ξ∗0 = 0. Observe thatB0,t(ξ∗) might decrease as the manager may be losing money, e.g. running the asset

whenΓ1,0(t) ≤ Yt ≤ 50. The discrete switching costsC are indicated by instantaneous drops inB0,t(ξ∗),
see for instance the solid curve on the lower panel aroundt = 0.25. One may also compute statistics of the

resulting total operational gainsB0,T (ξ∗) under the physical measureP. We find thatE[B0,T (ξ∗)] = 11.58,

andStDevP(B0,T (ξ∗)) = 19.57 (also recall thatp0,T (Y0, 0) = − 1
α0

ln E[exp(−α0B0,T (ξ∗))] = 8.89). At

the right tail we find thatP(B0,T (ξ∗) = 0) ' 0.31 andP(B0,T (ξ∗) < 0) ' 0.047, so that4.7% of the time

the production will result in an overall loss and31% of the time the oil platforms will be kept shut down

throughout the six months. On the other hand, we findP(B0,T (ξ∗) > 50) ' 0.059, showing that highly

profitable outcomes are also not uncommon.

It remains to describe the optimal hedging strategyπ∗. Recall thatπ∗t (Yt, i) denotes the dollar amount that

the manager will invest in theS-asset given the current local price and the current production regime, and

was computed in terms ofpt,T (Yt, i) in (3.13). Figure 4 shows the optimalπ∗0(Y0, 0) at t = 0 for different

values ofY0. This was obtained by recomputingp0,T (Y0, i) for different initial values ofY0 and then using

a finite-difference approximation of (3.13). As expected,π∗0(Y0, 0) < 0 since the manager will attempt to
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FIGURE 3. Optimal Operational Strategy for Example 1. The top panel shows evolution

of two sample paths of{Yt}, as well as the switching boundariesΓi,j(t) of Figure 2. The

bottom panel shows the corresponding cumulative realized operational gainsB0,t(ξ∗)(ω)
as a function oft. Switching up/down times are indicated with upper and lower triangles

respectively.

short the traded asset to hedge her production Call options on{Yt}. This can also be seen from (3.13): in

our example higher prices increase expected revenues so that∂Y p0,T (·, 0) > 0. Intuitively, the production

flexibility implies that the manager has a joint option on the (continuously-paying)Call1 = 5(Yt − 50)+
andCall2 = 5(2Yt − 112)+. Thus, whenYt is small, we expectπ∗t (Yt, 0) ' 0, whenYt is large we expect

π∗t (Yt, 0) ' πCall2t and in between we expectπ∗t (Yt, 0) ' πCall1t . As Yt increases,π∗t (Yt, 0) increases in

absolute value, because the Call options are deeper in-the-money. Figure 4 confirms this intuition; we see

thatπ∗0(Y0, 0) indeed interpolates between0, πCall10 andπCall20 .

5.2. Effects of Risk-Aversion and Correlation. In our model the risk-preferences of the manager are con-

veniently summarized in a single parameterγ. Because the risk-aversion parameterγ and the correlation

between the traded and local contractsρ always appear together as the productγ(1−ρ2), the effect of chang-

ing ρ is equivalent to changingγ. We call the above product the measure ofmarket incompleteness; recall

that asγ → 0 (or ρ→ 1), the manager becomes risk-neutral (the asset cashflow can be perfectly replicated)

and we pass to the limiting case of optimal switching under the risk-neutral measureQ. We already know

from Corollary 3 thatpt,T (y, i) is decreasing inγ (and increasing inρ). Increase in market incompleteness

can in fact be decomposed into two effects that may be termed “pessimism” and “precaution”:

• Precaution: Higherγ(1 − ρ2) makes the manager eschew more risky regimes, further widening the

hysteresis bands.

• Pessimism: Higherγ(1− ρ2) means that the manager is more conservative and places a lot of value on

scenarios with low revenue. She will gain little utility from highly profitable outcomes.
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FIGURE 4. Delta hedging of operational flexibility for Example 1 at timet = 0. The thick

blue curve shows the optimal hedgeπ∗0(Y0, 0) at t = 0 for different values ofY0 and initial

regime 0. The sloping dotted lines indicate classical Delta hedging amountsπCall10 , πCall20

computed using the equivalent of (3.13) in the absence of operational flexibility.

Figure 1 already showed the impact of changingγ(1 − ρ2) on initial p0,T (y, i). The rightmost panel of

Figure 5 shows howγ(1 − ρ2) impacts the switching boundariesΓi,j(t). Interestingly we observe that as

γ(1− ρ2) increases, all switching boundariesincrease, with a very slight widening of the hysteresis bands.

This is because the volatility of revenues is highest in regime 2 and lowest in regime 0. Thus, precaution

encourages the manager to spend more time in the least-volatile regime 0, increasing both the up-switching

boundaryΓ0,1(t) and the down-switching boundaryΓ1,0(t) (similar effect forΓ1,2(t) andΓ2,1(t)). This

slight change should be contrasted with the strong pessimism effect manifested in Figure 1.

Remark6. The simulation algorithm is sensitive to the productγ(1 − ρ2) which enters the power in the

nonlinear expectation (3.15). Thus the variance of the algorithm increases asγ(1− ρ2) decreases.

5.3. Effect of Switching Costs. As stated in Corollary 3, the indifference valuep0,T (Y0, 0) is decreasing

in switching costsCi,j . AsCi,j → 0, the path-dependency of the problem disappears and the current regime

has no influence. Thus, at every switching opportunity, the manager will simply choose the regime with the

highest payoff, so that her flexibility becomes a series of chooser Call options. Accordingly, the hysteresis

bands shrink away. The middle panel of Figure 5 demonstrates this feature by plottingΓi,j(0.2) against

switching cost scaleC, where we have takenCi,j = C|i − j|. At the other extreme, highCi,j makes

changing regimes very expensive and takes away much of the managerial flexibility (C = 1 takes away

nearly20% of value).

5.4. Effect of Volatility. As the volatility of local priceb increases, two conflicting events take place: (a)

ceteris paribus switching becomes more frequent, increasing switching costs; (b) there are more upside

opportunities which bring in extra profit since the manager has Call options on income. In this particular
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FIGURE 5. Dependence of switching boundariesΓi,j(t) of Example 1 for a fixedt = 0.2 on

model parameters. From left-to-right: the effect of the measure of market incompleteness

γ(1− ρ2); the effect of switching costsC in Ci,j = C|i− j|; the effect of production-price

volatility b.

example, we find that the second effect dominates and the first one is mitigated by the widening of the

hysteresis bands, see the rightmost panel of Figure 5. This happens because of precaution: there is more

uncertainty about future evolution of{Yt}, so each production switch is more risky and taken more reluc-

tantly. Overall, the indifference valuep0,T (Y0, 0) is slightly convex inb, a behavior similar to standard Call

options. For instance, compared tob = 0.4, b = 0.32 reduces value by 24%; withb = 0.48, p0,T (Y0, 0) is

increased by25%.

5.5. Further features: Example 2. To further illustrate the capabilities and structure of our model, we

consider a more complicated second example. It features the manager of a gold mining firm who has four

possibilitiesξt ∈ {0, 1, 2, 3} regarding running a particular mine location:

• Mothball the site which carries zero costs,ψ0(Yt) ≡ 0;

• Temporary shutdown which carries fixed costs ofK = −$40M/yr, ψ1(Yt) = −40;

• Normal operation with extraction costs of $ 530/ounce and production rate of 1 million ounces a year,

plus the aforementioned fixed costs,ψ2(Yt) = (Yt − 530)− 40;

• Maximum production of 1.5 million ounces a year but with a a slightly higher fixed cost of $55 million

a year to reflect hiring of extra labor:ψ3(Yt) = 1.5Yt − 850;

• The cost matrix is given by

C = (Ci,j) =


0 25 25 50
25 0 5 25
25 0 0 25
50 25 25 0

 ,

so that mothballing and maximum production are very expensive to initiate and end;

• The firm makes twice-weekly decisions about its operations so the operational flexibility problem has

a given∆t = 1/104; the planning horizon isT = 2 years.

• All decisions take a full two weeks to implement, during which no further operational switches are

possible.

• The company hedges its production using the continuously-traded liquid London bullion market{St}
wheredSt = St(0.05 dt+ 0.2 dW 1

t ).
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• Production is tied to the local wholesale price which is modeled by

dY ξ
t = κ(ln θY (ξt)− lnY ξ

t ) · Y ξ
t dt+ bY ξ

t · (0.99 dW 1
t +

√
1− 0.992 dW 2

t ).(5.2)

• Above parameters areθY (0) = θY (1) = θY (2) = 600, θY (3) = 580, κ = 1, b = 0.2, r = 0.06.

• The risk-aversion coefficient isγ = 0.05.

The dynamics (5.2) is the log-normal mean-reverting model often used for commodities (Schwartz 1997).

For a fixed production regime,{Y i
t } will tend to be aroundθY (i), more precisely{lnY i

t } follows an

Ornstein-Uhlenbeck process with mean-reversion levelln θY (i). Observe that this level is taken to de-

pend onξt, modelingprice impact. Namely we suppose that when extraction proceeds at maximum rate,

local supply of gold increases and drives prices down from a mean of$600/oz to $580/oz.
The operational inertia feature described implies thatδi = 4∆t in the notation of Remark 2. This is

incorporated into the numerical algorithm by adjusting (3.15) to

p∆
t,T (y, i) =

{
max
j 6=i

−1
αt

ln Ēt,y,i
[
exp
(
−αt+δj [p

∆
t+δj ,T

(Yt+δj , j) +Bt,t+δj (j)− erδjCi,j ]
)]}

∨
{
−1
αt

ln Ēt,y,i
[
exp
(
−αt+∆t[p∆

t+∆t,T (Yt+∆t, i) +Bt,t+∆t(i)]
)]}

.

Observe that in the model considered, the measure of market incompleteness is rather smallγ(1− ρ2) =
9.95 · 10−4 and the switching costs are relatively high. Consequently, the precaution effect is expected to

be much more influential compared to Example 1. Also, the manager must balance between temporary

shutdowns (regime 1) that maintain future flexibility, and mothballing that eliminates the fixed costsK. We

find that forY0 = $600/oz,

p∆
0,T (Y0, ·) = [45.06, 55.33, 61.58, 60.45].

For comparison,̄E[
∫ 2
0 (Yt−570) dt |Y0 = 600] = 47.13, so even though the mine is generally profitable and

one expects regime 2 to be most common, the flexibility of the manager increases value by over $14 million,

or almost 30% compared to the case of just running it in standard production throughout the two years.

As illustrated in Figure 6 the structure of the switching boundaries in this example is rather non-trivial:

• From mothballed regime 0, the decision maker will wait until prices rise all the way toΓ0,2(t) '
$640/oz and then switch directly into regular production;

• From the ‘off’ regime, the manager will either mothball the mine if prices drop to aboutΓ1,0(t) '
$480/oz (recall that regular production cost is$530/oz), or go to regular production if prices rise to

aboutΓ1,2(t) ' $550/oz;
• From regular production, the firm will either go into no production if price drops toΓ2,1(t) ' $495/oz,

or into maximum production if prices skyrocket toΓ2,3(t) ' $725/oz. Observe that even though

the dis-economy of scale is very small, the price impact and high switching costs make the manager

reluctant to go into maximum production.

• Finally, from maximum production the firm will keep producing until prices drop tomax(Γ3,2(t),Γ3,1(t)) '
$495/oz. Early on it will then shut down production, however after a few months the best action be-

comes switching to regular production instead. This bifurcation shows that the time-dependence can

lead to quite complex effects.
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FIGURE 6. Switching boundaries for Example 2 of Section (5.5). We show the seven

relevant boundariesΓ0,2(t),Γ1,2(t),Γ2,3(t),Γ3,2(t),Γ3,1(t),Γ2,1(t),Γ1,0(t) as a function

of time t. The dashed boundaries with upward arrows represent levels for switching to a

higher production regime and the solid boundaries and downward arrows represent levels

for switching to a lower production regime.

5.6. Effect of Operational Constraints. We now investigate the effect of changing the various constraints

faced by the gold producer. The results are summarized in Table 2. As the first step, we study the effect of

operational delayδ. One could imagine that the firm can invest in a more streamlined execution structure

that will reduceδ and wants to assess the resulting benefits to determine the viability of such an upgrade.

The first few rows of Table 2 show the effect of doing so for various values ofδ, compared to the base case of

δ = 4∆t. While the absolute changes are not very large, compared to the whole “flexibility” benefit of $14

million they are significant. Thus, going toδ = ∆t (so that a decision leads to effective production change

within half a week) will increase flexibility benefit by another 14%. For comparison, if implementation

delay were to become a full month, almost $2 millon would be lost.

We next consider the extra flexibility afforded by the mothballing regime 0. First, imagine that mine

mothballing must be permanent, which is equivalent to settingC0,j = +∞ for all j. We find that the asso-

ciated value drops by$0.2 million, which is very small. On the other hand, if we imagine that mothballing

is not possible at all (equivalent toCj,0 = +∞ for all j), then value drops by another$0.6 million or a total

loss of 6% of flexibility benefit. Thus, we see that regime 0 does make a significant contribution to overall

flexibility of the manager and that it is indeed used as a long-term mothballing state (since one very rarely

switches out of it).

Finally, we can consider by how muchp0,T (y, i) is reduced by the price impact. Changing toθY (3) = 600
we find thatp0,T (600, 1) increases by nearly $7 million, showing that market power can have very strong

effect on overall profitability. The effect ofξ on {Yt} also explains the extreme reluctance of the manager

to switch into high production (Γ2,3(t) of over$720/oz in Figure 6).
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Model Change p0,T (Y0, 1) p0,T (Y0, 2)

Base Caseδ = 4∆t 55.33 61.58
δ = 8∆t 53.29 60.73
δ = 2∆t 56.62 62.26
δ = ∆t 57.31 62.64

Permanent Mothballing 55.08 61.32
No Mothballing Possible 54.49 60.68

No Price ImpactθY (3) = 600 62.23 68.78

TABLE 2. Effect of various operational settings on the indifference price of operational

flexibility in Example 2 of Section 5.5. Values were computed using the simulation algo-

rithm of Section 4.2 withNp = 40, 000 paths andNB = 6.

6. CONCLUSION

In this paper we have studied the problem of optimal firm management using a joint operational/financial

strategy. This approach allows overall risk-management of the firm with both financial and operational poli-

cies given equal footing. Our model links the methods of option pricing in incomplete markets (Carmona,

ed. 2006) with the real options literature (Dixit and Pindyck 1994). This is reflected in the solution struc-

ture which consists of standard portfolio optimization problems between production decisions and switching

boundaries that determine production regimes. Moreover, the representation as a series of coupled American

options is intuitive for the manager and gives simple and familiar policy guidelines. Besides being compre-

hensive, as illustrated in the last section, our model also permits a highly granular approach for analyzing the

effects of various operational constrains, ranging from switching costs to impact of market power. Looking

forward, our model can also be used for strategic production planning (expansion, mergers, upgrades, etc.)

via comparison of indifference valuespt,T (y, i;U) for assets with various acceptable policy setsU .

In terms of model parameters, we found that the risk-aversion of the manager induces a strong pessimism

effect (on the order of 10%-50%) on the valuep0,T (y, i) of the asset, and a weak precaution effect (on the

order of 1%-5% in terms ofΓi,j) on the optimal production policyξ∗. On the contrary, the fixed switching

costs have only a2%−5% effect onp0,T (y, i) but strongly influence the width of the hysteresis bands. Since

the optimal operational policyξ∗ is determined by{Γi,j(t)}, a possible shortcut for approximating the full

model (2.9) is to solve a standard linear optimal switching problem under the minimal martingale measure

Q. This will (nearly fully) reflect the effect of switching constraints; the pessimism effect ofγ(1− ρ2) can

then be added-on via a volatility penalty onB0,T (ξ∗), as explained by Henderson (2002):

− 1
αt

ln Ēt,y,i [exp(−αTBt,T (ξ∗))]

' e−r(T−t)
{

Ēt,y,i[Bt,T (ξ∗)]− γ(1− ρ2)
2

V art,y,i(B0,T (ξ∗)) +O
(
γ2(1− ρ2)2

)}
.

6.1. Liquidity Risk. A different interesting application of our framework can be found in the area of liquid-

ity risk. Consider a portfolio optimization problem using one liquid asset with negligible transaction costs,

and one illiquid asset with significant transaction costs. Such a situation arises whenever a thinly traded
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underlying{Yt} (e.g. an exotic commodity forward) is tracked using a closely related market contract{St}.
The action set ofξ would now correspond to various possible positions taken inY and the functionsψi(t, y)
will reflect the resulting P&L. The fixed switching costsCi,j model the liquidity constraints of trading in

{Yt}, and one can also incorporate again price impact of the trading strategyξ on the illiquid price{Y ξ
t }. A

related model has been recently studied by Ly Vath et al. (2007) using analytic pde methods.

6.2. General Utility Processes.Recall that in the case of exponential utility we obtainediterativity of the

indifference value in (3.12) across time-periods. This natural feature is very attractive and matches one of

the basic properties of the classical method (1.1). We stress that it is not intrinsic to the indifference valuation

method; rather it follows from our choice of exponential utilityU(x). In fact, as shown by Cheridito and

Kupper (2006), within the expected utility framework, exponential utility is the only one that satisfies this

iterative structure of (3.12).

However, it is possible to extend the model beyond terminal expected utility framework. Note that the

latter is actually rather limited in practice, as it assumes the manager only cares aboutfinal wealth level at

T . A realistic manager is likely to have preferences not over wealth levels at dateT , but over entire wealth-

paths over[0, T ]. For instance, the firm might prefer to avoid having the wealth dip too low at intermediate

time points to prevent a credit crunch, or it might wish to do earnings management by minimizing volatility

of cashflows. Such a setup can be accommodated in the framework of monetary utility processes introduced

by Cheridito et al. (2006). The idea is to replace the single utility functionU(XT ) with a sequence of utility

functionals of the formUt,T (X·), which assign to a wealth process(Xt)t≤T its risk-adjusted date-t value

based on the entire evolution fromt to T . Thus,Ut,T is a map from sayL∞([t, T ]× R) toL∞(Ft). In this

paper, we worked with the entropic monetary utility process where

Ut,T (X·) = −1
γ

ln EQ[exp(−γXT )| F̃t
]
.(6.1)

Another popular possibility is the worst-stopping functionalUt,T (X·) = ess infτ∈S(t) E
[
Xτ | Ft

]
. Once a

particular family{Ut,T }t≤T is picked, the optimization problem (2.9) becomes

V (t, x, y, S, i) = ess sup
π∈A(t,T ),ξ∈U(t,T )

Ut,T
(
Xt,x,π,ξ
·

)
, Yt = y, St = s, ξt = i

and the resulting indifference valuation method is

pUt,T (y, i) = ess sup
π∈A(t,T ),ξ∈U(t,T )

Ut,T
(
Xt,x,π,ξ
·

)
− ess sup
π∈A(t,T )

Ut,T
(
Xt,x,π
·

)
, with Yt = y, ξt = i.(6.2)

For this to make economic sense, it is necessary that the family{Ut,T } be time-consistent(Cheridito et al.

2006). Time-consistency is also sufficient for the problem to be invariant with respect to initial wealthx and

for pt,T to satisfy a recursion similar (3.12). Computationally, both properties are crucial for tractability and

also allow one to use the Longstaff and Schwartz (2001) approach of Section 4.2 over the coupled optimal

stopping problems. The theory of monetary utility processes in continuous-time is still incomplete (see

some recent progress in Klöppel and Schweizer (2007)), but offers exciting possibilities for more realistic

modeling of our problem. We leave further work in this direction to future research.

Another alternative is to consider a horizon-independent construction which removesT altogether. Su-

perficially this would rule out an expected utility framework. However, thanks to time-consistency of expo-

nential utility, this is in fact possible using the ideas of Henderson and Hobson (2007). Unfortunately, it is
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not clear how to choose a proper risk criterion over operational production, in particular given seasonality in

commodity markets that necessitate keeping track of calendar time and exclude time-stationary solutions.

APPENDIX: PROOFS

Proof of Lemma 3. We prove the lemma by induction. First fork = 1, the control set is simplyU1(σ, T ) =
{ξ = (σ, ξ0, τ1, ξ1)} where the only choices are forτ1 ∈ S(σ) andξ1 ∈ D(τ1, ξ0). Hence, using (2.6) and

ατ1 = αT er(T−τ1),

φ1(σ, Yσ, i) = ess sup
ξ∈U1(σ,T ),ξσ=i

Ē
[
− exp(−αTBσ,T (ξ))

∣∣∣Fσ]
= ess sup

τ1∈S(σ),ξ1∈D(τ1,i)
Ē
[
− exp

(
−αT [er(T−τ1)(Bσ,τ1(i)− Ci,ξ1) +Bτ1,T (ξ1)]

)∣∣∣Fσ]
= ess sup

τ1∈S(σ),ξ1∈D(τ1,i)
Ē
[
exp(−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]) · Ē

[
− exp(−αTBτ1,T (ξ1))

∣∣Fτ1]∣∣∣Fσ]
= ess sup

τ1∈S(σ),ξ1∈D(τ1,i)
Ē
[
exp(−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]) · φ0(τ1, Yτ1 , ξ1)

∣∣∣Fσ] .
Next, suppose (3.9) is true fork and consider (3.9) whenk is replaced byk + 1. Let ξ ∈ Uk+1(σ, T ) be

an arbitrary control withξσ = i. Writing ξ = (σ, i, τ1, ξ1, ξ(k)) with ξ(k) ∈ Uk(τ1, T ) we obtain

Ē
[
− exp(−αTBσ,T (ξ))

∣∣∣Fσ] = Ē
[
− exp

(
−αT

[
er(T−τ1)(Bσ,τ1(i)− Ci,ξ1) +Bτ1,T (ξ(k))

])∣∣∣Fσ]
= Ē

[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· Ē
[
− exp

(
−αTBτ1,T (ξ(k))

)∣∣Fτ1 , ξ(k)τ1 = ξ1

] ∣∣∣Fσ]
≤ Ē

[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ] ,
where the last line is by the induction hypothesis. Taking essential supremum (with respect toξ on the

left-hand-side and with respect to(τ1, ξ1) on the right-hand-side) yields

φk+1(σ, Yσ, i) = ess sup
ξ∈Uk+1(σ,T ),ξσ=i

Ē
[
− exp

(
−αTBσ,T (ξ)

)∣∣∣Fσ]
≤ ess sup

τ1∈S(σ),ξ1∈D(τ1,i)
Ē
[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ] .(A.1)

Conversely, let(τ1, ξ1) be an arbitrary pair in(S(σ),D(τ1, i)). It is easy to check that the control set

Uk(τ1, T ) is stable under pairwise maximization (directed upwards) and therefore there exists a sequence

ξ(n) ∈ Uk(τ1, T ), ξ(n)
τ1 = ξ1 such that

φk(τ1, Yτ1 , ξ1) = lim
n→∞

↑ Ē
[
− exp(−αTBτ1,T (ξ(n)))

∣∣Fτ1] .
Then, forξ̂(n) , (σ, i, τ1, ξ1, ξ(n)) ∈ Uk+1(σ, T ) we have

φk+1(σ, Yσ, i) ≥ lim sup
n→∞

Ē
[
− exp

(
−αTBσ,T (ξ̂(n))

)∣∣Fσ]
= lim sup

n→∞
Ē
[
− exp

(
−αT

[
er(T−τ1)(Bσ,τ1(i)− Ci,ξ1) +Bτ1,T (ξ(n))

])∣∣∣Fσ]
= lim sup

n→∞
Ē
[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· Ē
[
− exp(−αTBτ1,T (ξ(n)))

∣∣Fτ1] ∣∣∣Fσ]
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by Monotone Convergence Theorem the limit can be passed inside the expectation

= Ē
[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· lim
n→∞

Ē
[
− exp(−αTBτ1,T (ξ(n)))

∣∣Fτ1] ∣∣∣Fσ]
= Ē

[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ] .
Sinceτ1 andξ1 were arbitrary, taking essential supremum on the right hand side shows that

φk+1(σ, Yσ, i) ≥ ess sup
τ1∈S(σ),ξ1∈D(τ1,i)

Ē
[
exp
(
−ατ1 [Bσ,τ1(i)− Ci,ξ1 ]

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ] ,
and combined with (A.1) concludes the proof of Lemma 3. �

Proof of Lemma 4. The proof will be established by induction. Fork = 0, take

φ̄0,i
t = Ē

[
− exp(−γ(1− ρ2)

∫ T

0
er(T−s)ψi(s, Ys) ds)

∣∣Ft] · exp
(
γ(1− ρ2)

∫ t

0
er(T−s)ψi(s, Ys) ds

)
.

Thenφ̄0,i is a product of two smooth functionals of the Feller processY and clearlyφ0(σ, Yσ, i) = φ̄0,i
σ .

Now suppose that the lemma has been proved fork, and consider the case wherek is replaced byk + 1.

Fix i ∈ ZI and define

φ̌k,it , max
j 6=i

{
exp(−αt(B0,t(i)− Ci,j)) · φk(t, Yt, j)

}
.

By the induction hypothesis,̌φk,i is a continuous,F-progressively measurable, bounded process. General

theory (El Karoui 1981) then implies that the Snell envelopeφ̃k+1,i(σ) = ess supτ∈S(σ) Ē
[
φ̌k,iτ
∣∣Fσ] of φ̌k,i

is a regularF-supermartingale, i.e. there is a continuousF-adapted process̄φk+1,i such thatφ̃k+1,i(σ) =
φ̄k+1,i
σ . Furthermore, the optimal stopping problemsupτ∈S Ē

[
φ̌k,iτ
]

has an optimal solution explicitly given

by τ∗ = inf{s : φ̌k,is = φ̄k+1,i
s }. We now compute

φk+1(σ, Yσ, i) = ess sup
τ1∈S(σ),ξ1∈D(τ1,i)

Ē
[
exp(−ατ1(Bσ,τ1(i)− Ci,ξ1)) · φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ]
= ess sup

τ1∈S(σ),
ξ1∈D(τ1,i)

Ē
[
exp
(
−ατ1(B0,τ1(i)−

∫ σ

0
er(τ1−s)ψi(s, Ys) ds− Ci,ξ1)

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Fσ]

= exp(ασB0,σ(i)) · φ̃k+1,i(σ) = exp(ασB0,σ(i)) · φ̄k+1,i
σ .

On the last line as a function ofσ we have a continuousprocess, which establishes the required regularity

of φk+1(·, ·, i). The uniform bounds onln(−φk+1) easily follow from the bounded payoff rates:

| ln−φk(t, y, i)| ≤ ln Ē[exp(γ(1− ρ2)
∫ T

t
er(T−t)Cψ ds)] ≤ γ(1− ρ2)(T − t)er(T−t)Cψ.

�

Proof of Lemma 5. This follows by an easy induction argument. Indeed, the equality fork = 0 holds by

definition ofp0 and assuming it is true fork we have from (3.9)

φk+1(t, y, i) = sup
τ1∈S(t),ξ1∈D(τ1,i)

Ē
[
exp
(
−ατ1 [Bt,τ1(i)− Ci,ξ1 ]

)
· φk(τ1, Yτ1 , ξ1)

∣∣∣Yt = y
]

= sup
τ1∈S(t),ξ1∈D(τ1,i)

Ē
[
− exp

(
−ατ1

{
Bt,τ1(i)− Ci,ξ1 + pk(τ1, Yτ1 , ξ1)

})∣∣∣Yt = y
]

= − exp(−αt · Gpk(t, y, i)) = − exp(−αt · pk+1(t, y, i)).
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by using the induction hypothesis for the second equality and (3.11) for the third one. As proved in Lemma

4, | ln(−φk(t, y, i))| is bounded, which implies the same for|pk(t, y, i)| ≤ γ(1−ρ2)(T − t)er(T−t)Cψ. �

Proof of Proposition 2. By Lemma 5 we have thatpk(t, y, i) is increasing ink since the corresponding

control sets in (3.8) are growing. On the other hand, sinceUk ⊂ U , pk(t, y, i) 6 pt,T (y, i) < ∞, and the

pointwise limitp∞ = limk→∞ pk is well-defined and finite. Clearlyp∞(t, y, i) 6 pt,T (y, i). To show that

p∞(t, y, i) > pt,T (y, i), it suffices to show that for anyε > 0, one can find aε-optimal policy ofpt,T (·)
which is finite, i.e. belongs to someUK(t, T ) for K large enough.

Let ξε be anε-optimal policy ofpt,T (y, i). Sinceξε is admissible,τ εk → T in probability, and there is a

K large enough so thatQt,y,i(τK < T − ε) < ε. For thatK, takeξK ∈ UK to matchξε up to theK-th

switch, with no switches afterτ εK : ξK(t) = ξε(t)1t<τε
K

+ξε(τ εK)1t≥τε
K

. Then using the fact that operational

payoffs are bounded, and lettingA = {τ εK ≥ T − ε}, we have for any strategyξ

|αTBτε
K ,T

(ξ)| ≤ αTCψT erT1Ac + εCψ1A =: C11Ac + C2ε1A,

for some constantsC1, C2 independent ofξ. Applying the above, relation (2.6),Qt,y,i(A) > 1− ε and using

the fact that|ατε
K
Bt,τε

K
(ξε)| ≤ γ(1− ρ2)(T − t)er(T−t)Cψ =: C3 we have

pK(t, y, i)− (pt,T (y, i)− ε) ≥ pK(t, y, i; ξK)− pt,T (y, i; ξε)

=
1
αt

ln
Ēt,y,i

[
exp(−αT (er(T−τ

ε
K)Bt,τε

K
(ξε) +Bτε

K ,T
(ξε)))

]
Ēt,y,i

[
exp(−αT (er(T−τ

ε
K)Bt,τε

K
(ξε) +Bτε

K ,T
(ξετε

K
)))
]

≥ 1
αt

ln
Ēt,y,i

[
exp(−ατε

K
Bt,τε

K
(ξε)) · {exp(−C11Ac − C2ε1A)}

]
Ēt,y,i

[
exp(−ατε

K
Bt,τε

K
(ξε)) · {exp(C11Ac + C2ε1A)}

]
≥ 1
αt

ln
Ēt,y,i

[
exp(−ατε

K
Bt,τε

K
(ξε))] · (1− 2εC2) + (exp(−C1 − C3)− exp(C3))ε

Ēt,y,i
[
exp(−ατε

K
Bt,τε

K
(ξε))] · (1 + 2εC2) + exp(C1 + C3)ε

≥ −4C2 + 4 exp(C1 + C3)
αt

ε,

where the last inequality usesln(1 − x) ≥ 1 − 2x for x small enough. Sinceε was arbitrary this implies

limk→∞ pk(t, y, i) ≥ pt,T (y, i). The fact thatpt,T is a fixed point ofG easily follows from the increasing

property ofG: if w1 ≥ w2 thenGw1 ≥ Gw2. Sincept,T (y, i) ≥ pk(t, y, i) we have

Gpt,T (y, i) ≥ lim
k→∞

Gpk(t, y, i) = lim
k→∞

pk+1(t, y, i) = pt,T (y, i)

≥ lim
k→∞

pk(t, y, i) = lim
k→∞

Gpk−1(t, y, i) = Gpt,T (y, i),

which implies that all inequalities must be equalities and therefore (3.12). The increasing property ofG also

implies thatpt,T (·, i) is thesmallestfixed point ofG bigger thanp0(t, ·, i).
The bound onpt,T is immediate by

pt,T (y, i) = − 1
αt

ln Ēt,y,i[exp(−αTBt,T (ξ∗))]

≤ − 1
αt

ln Ēt,y,i[exp(−αT (T − t)er(T−t)Cψ)] = (T − t)Cψ.

To establish the Lipschitz property ofpt,T we recall that by Assumption 3, the flowy → Y y
t (ω) is locally

Lipschitz, so that for any compact ballB(y, r), andt′ ∈ [0, t] there is a constantC(y) such thatY y2
t′ −

Y y1
t′ ≤ C(y) P-a.s. for anyy1, y2 ∈ B(y, r). By the boundedness ofψi, we have the similar estimate
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|Bt,T (ξ; y1) − Bt,T (ξ; y2)| ≤ (T − t)erTCψC(y) =: C1 where we explicitly show the dependence of the

realized gains on the initial condition of{Yt}.
Let ξ1 be an optimal strategy forpt,T (y1, i). We obtain

pt,T (y1, i)− pt,T (y2, i) ≤ pt,T (y1, i)− pt,T (y2, i; ξ1)

= − 1
αt

ln
Ēt,y1,i[exp(−αTBt,T (ξ1))]
Ēt,y2,i[exp(−αTBt,T (ξ1))]

= − 1
αt

ln
Ēt,·,i[exp(−αT (Bt,T (y1, ξ

1)−Bt,T (y2, ξ
1)) exp(−αTBt,T (y2, ξ

1))]
Ēt,y2,i[exp(−αTBt,T (ξ1))]

≤ − 1
αt

ln
Ēt,·,i[exp(−αTC1|y2 − y1|) · exp(−αTBt,T (y2, ξ

1))]
Ēt,y2,i[exp(−αTBt,T (ξ1))]

=
αT
αt
C1|y2 − y1|.

Repeating the same argument usingξ2 establishes the opposite inequality and we conclude that|pt,T (y1, i)−
pt,T (y2, i)| ≤ erTC1|y2 − y1| uniformly in t and on compact subsets iny. �
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