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Abstract We develop a Monte Carlo method to solve continuous-time adaptive disorder problems. An
unobserved signalX undergoes a disorder at an unknown time to a new unknown level. The controller’s
aim is to detect and identify this disorder as quickly as possible by sequentially monitoring a given
observation processY. We adopt a Bayesian setup that translates the problem into atwo-step procedure
of (i) stochastic filtering followed by (ii) an optimal stopping objective. We consider joint Wiener and
Poisson observation processesY and a variety of Bayes risk criteria. Due to the general setting, the state
of our model is the full infinite-dimensional posterior distribution of X. Our computational procedure
is based on combining sequential Monte Carlo filtering procedures with the regression Monte Carlo
method for high-dimensional optimal stopping problems. Results are illustrated with several numerical
examples.

1 Introduction

Disorder detection and isolation is a classical problem in statistical signal processing. In its adaptive
or robust form, a signalX changes at a random timeθ to a random levelχ from its original valueµ .
The signal is not observed directly, and neither areθ or χ . Instead, partial observations are available
in the form of an observation process whose dynamics are driven byX. In this paper we consider such
an adaptive disorder problem in continuous time with an additive jump-diffusion observation process
whose drift and jump rate depend onX. More precisely, the observations consist of two independent
channels, with channel I observingX in Gaussian white noise and channel II observing a counting
process withX-dependent intensity.

We focus on a Bayesian risk-minimization problem whereby a controller, based on her up-to-date
observations, is asked to sound an alarm, followed immediately with an announcement. The timing of
the alarm should be as soon as possible after the disorder time θ and the announcement should match
the new levelχ . Hence, the controller faces a dynamic control problem of choosing an alarm timeτ
and announcementd to minimize her risk criterion. The risk is measured througha Bayesian expected
cost function based on the posteriors ofθ andχ . Namely, starting from the given Bayesian priors for
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(θ ,χ), the posterior distributionπt of X is derived sequentially given observations up to datet, yielding
an optimal stopping problem forπ.

The Bayesian formulation is relatively under-used in the sequential detection literature because in
the absence of finite-dimensional statistics forπ, we must work directly with the nonlinear filtering
equations. Here we resolve this challenge by providing an efficient computational approximation al-
gorithm for minimizing Bayes risk that preserves the key features of tracking the full posterior and
solving a dynamic control problem. Moreover, the Bayesian setup allows us to rigorously quantify the
trade-off between multiple risk criteria, as well as input prior information about the disorder distribu-
tion that is often available in practice.

Filtering in continuous-time semimartingale models is by now a classical topic rooted in the seminal
works of Jacod, Kushner, Zakai and others in 1970s. Unified presentation of additive jump-diffusion
models is available in [33] and the recent articles [17, 10].In our case the signalX is of particularly
simple form, consisting of a single-arrival point process.Nevertheless, while a variety of observation
models have been treated, the vast majority of literature assumes a parametric setup, namely taking
the post-disorder levelχ as known, whereby only estimation of the disorder timeθ is required. An
exception are the inspiring works by [3] for adaptive Poisson disorder and [31] for adaptive Wiener
disorder case. A different strand in sequential analysis has analyzed change point detection problems
(estimatingθ only) with unknown post-disorder levels in discrete-time [21, 26].

The need to estimate the constant post-disorder levelχ is related to the problem of parameter esti-
mation in hidden Markov models (HMM). Maximum likelihood treatment of this problem is possible
using the EM algorithm, see [17]. However, for Bayes risk objectives the point estimates such maxi-
mum likelihood procedures provide are inappropriate, lacking the estimate uncertainty and sequential
updating that is required. More relevant for us is thereforethe class of sequential Monte Carlo (SMC)
methods [15] for nonlinear filtering. These methods, especially common for discrete-time models, ap-
proximateπ with an empirical particle cloud that is sequentially propagated according to a mutation-
selection procedure. Similar to our disorder setting, Chopin [6, 7] considered SMC filtering of jump
Markov processes, while [19, 32] studied tracking applications in engineering that require SMC filter-
ing of piecewise deterministic processes observed in Gaussian noise. The reference volumes [5] and
[1] summarize the current state-of-the-art of SMC.

From the control perspective, our setup is closely aligned with optimal stopping of continuous-time
HMMs which goes back to the original disorder problem posed by Shiryaev in 1960s [30]. Histor-
ically, the focus has been on analytic methods that assume known χ and exponentially distributed
θ , see [28, 10, 12]. In the recent paper [25] the author together with S. Sezer considered a general
optimal stopping problem with similar risk objectives and Poissonian observations for a genericfinite-
dimensionalhidden Markov chainX.

In this paper we generalize the previous models for Poisson and Wiener disorders in [3] and [31]
respectively, to provide a computational framework for minimizing Bayesian risk in adaptive disorder
problems. Thus, we allow for simultaneous observations of apoint-process and diffusion channels, as
well as arbitrary disorder time and post-disorder rate distributions. Finally, we permit a wide variety
of Bayes risk functions, including most of those proposed inthe literature, such as probability of false
alarm, detection delay, and penalty for mis-identifying the post-disorder rate. In our general setting the
resulting filtering problem is infinite-dimensional which leads to a stopping problem with measure-
valued state variables. We resolve these challenges by linking together the aforementioned literatures
on SMC methods for change-point detection and the recent simulation-based algorithms for optimal
stopping, see e.g. [16, 23]. More precisely, we propose to use particle filters for the filtering step
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and regression Monte Carlo for the optimization step. Thanks to these choices, our numerical scheme
is fully Monte Carlo based, and generates computational efficiencies by integrating the filtering and
Snell envelope calculations. Moreover, the algorithm is robust to model specification, requiring only
the ability to simulate the underlying stochastic processes and likelihood ratios. This approach was
first proposed in [24] in the context of classical nonlinear filtering of diffusions. Herein we adapt it
to the robust disorder problem which requires significant adjustments both in the model setup and
computational implementation.

Besides theoretical interest, the (adaptive) disorder problem has numerous applications in reliability
theory, threat detection, and finance and insurance investment decisions. We refer to [25] for a cata-
logue of problems that correspond to optimal stopping of a partially observed Markov chain which
is a finite-dimensional version of our setup. Let us highlight two typical examples. In cyber-security,
a controller must detect and identify unusual network traffic that might be a sign of a security intru-
sion. Depending on network volume, packet trafficY could be modeled either as a point process or
as a Brownian motion (or a multi-scale combination of the two). The main trade-off is then between
detection delay and frequency of false alarms.

In real options, project manager must decide on her start-upinvestments to match the demand level.
Consider a novel technology product for which the demand level rises fromµ to χ at some unknown
dateθ . The manager must identifyχ andθ as close as possible in order to minimize lost profit oppor-
tunities while avoiding over-capacity. Managers make their decisions by monitoring market conditions
that are observed through frequency of positive economic events, as well as a related index that is
modeled as a Brownian motion with driftXt .

The rest of the paper is organized as follows. In Section 2 we provide a rigorous formulation of our
Bayesian adaptive disorder problem, in particular following the reference measure approach of [3].
Section 3 is devoted to the filtering sub-problem, while Section 4 describes the optimal stopping sub-
problem. Taken together, these sections provide a completedescription of our numerical algorithm,
which is summarized in pseudo-code in the Appendix. Section5 illustrates our approach with several
numerical examples. Finally, Section 6 points out possiblegeneralizations and directions for future
research.

2 Problem Formulation

2.1 Canonical setup

Let (Ω ,F ,P0) be a probability space supporting a Poisson processN= {Nt ; t ≥ 0}with given intensity
µ > 0 and an independent Wiener processY = {Yt ; t ≥ 0}. The arrival times ofN are denoted as
σ1,σ2, . . .. We assume that this space in addition supports two positiverandom variablesθ and χ ,
independent ofN andY. The distribution ofχ isF(·) and the distribution ofθ isG(·). We assume thatG
is absolutely continuous except possibly for a point mass ofweightp0 at zero, so thatP0(θ = 0) = p0.
All of µ ,F,G are assumed known.

The quantitiesθ andχ are used to define the signal processX. Namely,X is given by the right-
continuous, piecewise-constant process

Xt = µ1t<θ +χ1t≥θ , t ≥ 0. (1)
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Becauseχ andθ are independent, the pair(Xt, t) form a Markov process. More abstractly,X can be
viewed as a simple point process with a single arrival timeθ and corresponding markχ .

Thanks to absolute continuity ofG, we may define the hazard rateλt of θ via λt ,
G(dt)

1−G(t) . In the
special case whereθ is a mixture of the point mass at zero and an exponentialExp(λ ) distribution,
λt ≡ λ is constant, makingX a time-homogenous continuous-time Markov chain.

We denote byY= {Yt}t≥0 the right-continuous augmentation of the natural filtration σ (Ns,Ys : 0≤ s≤ t)
of (N,Y) and define the extended filtrationF= {Ft}t≥0 where

Ft , Yt ∨σ {θ ,χ} , t ≥ 0.

The signalX is aF -semimartingale. Let us define the(P0,F ) square-integrable martingale

Mt = 1θ≤t −
∫ t∧θ

0
λsds

= 1θ≤t + log

[
1−G

(∫ t

0
1θ>udu

)]
.

Then the indicatorEt = 1θ≤t admits the decomposition (see [31])

dEt = λt(1−Et)dt+dMt ,

and comparing with (1) we obtain the semi-martingale representation ofX as

dXt = λt(χ −Xt)dt+ χ dMt . (2)

We remark that in (2)M is independent ofN andY.
The generatorA of the Markov process(Xt, t) [9] is given through its action on a smooth function

f (x, t) as

(A f)(x, t) =
∂
∂ t

f (x, t)+1x=µλt

∫

R+

{ f (y, t)− f (x, t)}F(dy).

In particular,A f(Xt , t) =λt [ f (χ , t)− f (Xt , t)]. In the special case whereF(·) is discrete, placing mass at
ℓ≥ 1 points,X is a finite-state inhomogeneous Markov chain taking onℓ+1 values and its generatorAt

(also known as the transition matrix) is an(ℓ+1)× (ℓ+1) matrix. Under the additional assumption of
exponential disorder timeθ , this classical case corresponds to a continuous-time HMM and is treated
in detail in e.g. [3, 25, 17].

2.2 Physical probability P

The reference probability measureP0 is a theoretical device and our problem is in fact under the
physical measureP. In this section we constructP from P0 through a change of measure.

Consider the Doleans-Dade exponential martingale

Lt = Et(h ·Y)Et(Λ ·N)

= exp

{∫ t

0
hsdYs−

1
2

∫ t

0
h2

s ds

}
exp

{∫ t

0
log
(Λs−

µ

)
dNs−

∫ t

0
(Λs−µ)ds

}
, (3)
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whereh andΛ are twoFX-measurable functions. LetT < ∞ be a given problem horizon. Assuming
thatE0[LT ] = 1, i.e.L is a trueP0-martingale on[0,T] we define theP0-equivalent measureP via its
Radon Nikodym derivative

dP
dP0

∣∣∣
Ft

= Lt , 0≤ t ≤ T. (4)

TheP0-martingaleL solves the stochastic differential equation

dLs

Ls−
= hs−dYs+

Λs−−µ
µ

(dNs−µ ds), (5)

and is closely related to the likelihood processes from statistical signal processing. It will also play a
crucial role in our particle filtering algorithms in Section3.2. The following proposition (compare [1,
Prop 3.13]) is classical and motivates our construction.

Proposition 1.The following hold underP:

• The process Nt −
∫ t

0 Λsds is a(P,Y )-martingale.
• The process Wt ,Yt −

∫ t
0 hsds is a(P,Y )-Wiener process, independent of N.

• The signal X is not affected, i.e.(1) and(2) continue to hold.

To summarize, underP, the counting processN has stochastic intensityΛt (also known as a Cox
process) and the continuous processY (no longer independent ofN) satisfies the additivêIto stochastic
differential equationYt =

∫ t
0 hsds+Wt .

We will work with the Markov case,hs= h(Xs) andΛs=Λ(Xs). By relabeling the state-space ofX,
we may assume without loss of generality thatΛ(x) = x= χ is the identity map, an assumption already
reflected in (1). As a concrete example,h(x) = αx matches the classical Kalman-Bucy models in the
filtering literatures. Thus, we interpreth(X) as the drift ofY, andX as the intensity ofN underP. The
controller operates underP and has access only to the observable filtrationYt = σ(N,Y). In contrast,
the full information in the model is conveyed byFt = Yt ∨σ(Xs : s≤ t). Observe that underP, it is
impossible to fully detect the drift ofY or the intensity ofN so the controller haspartial information.

In the above Markovian case, to guarantee thatL is a trueP0-martingale we need the same property
for each of the two terms in (3). For the diffusion term, a typical sufficient condition is Novikov’s,

E0

[
exp
{1

2

∫ T

0
h2(Xs)ds

}]
< ∞,

and reduces toE0[exp{1
2(T −θ )h2(χ)}] < ∞. Whenh(x) = αx is linear, it is equivalent to existence

of exponential moments forχ2. For the jump term, a sufficient integrability condition is

E0

[
NT

∏
k=1

Λ(Xσk)

µ

]
= E0

[
eµ(T−θ)+· χ

µ
]
≤ E0

[
eTχ]< ∞,

where the first equality used the factNT ∼ Poisson(µT). Thus, it suffices to have a moment generating
function forχ with radius of convergence bigger thanT.

Remark 1.We note that the above observation scheme is equivalent to observing a single jump-
diffusion channelȲ with the dynamicsdȲt = ht dt+ dWt + dNt . Since the paths of

∫
hsds+W are
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continuous a.s., while the paths ofN are discontinuous a.s., the controller can then decompose back
her observations intōY =Yc+Yd, Yc =

∫
hsds+W =Y andYd = N as above.

2.3 Bayes Risk

The aim of the controller is to minimizerisk related to the disorder. She does so by stopping the
observations at a certain alarm timeτ coupled with an announcementd about the post-disorder level.
Both τ andd are selected dynamically based on observed data, leading toa stochastic control setup.

We focus on three types of risk: (i) risk of false alarms that occur by early announcements before
actual disorder timeθ ; (ii) risk of detection delay that occurs when the announcement is afterθ ; (iii)
identification risk due to wrong announcement about the post-disorder rateΛ . The corresponding cost
functions are frequency of false alarms, detection delay penalty, and penalties for mis-identification of
Λ . The controller will select the pair(τ ,d) to minimize the expected Bayes risk of these competing
objectives.

Let the control variables be the alarm timeτ and the decisiond, whereτ ∈ [0,T] andd∈ D for some
given subsetD ∈ R+. Let S be the set of allY -stopping times smaller thanT. Since the controller
has access only to theY -filtration, it is required thatτ ∈ S andd ∈ Yτ . Our Bayes risk objective is
then to minimize

R(τ ,d), E
π0
[
1{τ<θ}+c1(τ −θ )++H(d,Xτ)

]
, (6)

where(x)+ ≡ max(x,0). Abovec1 ≥ 0 is a constant related to the penalty for detection delay, and
H(d,x) is the penalty for making the announcementd when the true state isx. Without loss of gener-
ality, we normalize the cost of false alarms to 1.

The decision variabled corresponds to the decision-maker’s bestguessabout the value ofχ . How-
ever, rather than being simply the maximum likelihood estimate (or the conditional mean) ofχ , this
announcement is chosen to minimize the given risk criterionH(d,x). Three representative criteria we
consider are:

1. The mean squared error betweenχ andd, H(d,Xτ) = 1{τ≥θ}(Xτ − d)2, leading to candidate an-
nouncementd∗(τ) = E[Xτ |Yτ ,θ ≤ τ ];

2. Directional discrepancy betweend andχ relative toµ , H(d,Xτ) = 1{τ≥θ}|1Xτ≥µ −1d≥µ |, leading
to d∗ > µ if and only if P(X ≥ µ |Yt)> 1/2, and piecewise linear stopping costs ofP(χ ≥ µ |Yτ)∧
(1−P(χ ≥ µ |Yτ));

3. Signed absolute difference betweend and χ , H(d,x) = c11{x<d}(d− x) + c21{x≥d}(x− d) with
candidate announcementd∗ as the quantileP(Xτ ≤ d∗|Yτ) =

c2
c1+c2

.

We emphasize that when a mixture of the above stopping criteria are used, the optimal announcement
d∗ will be a weighted average of the candidated’s, but can always be straightforwardly computed in
any given model. To fix ideas, for the remainder of this section we will consider the mixed weighted
penalty,

H(d,Xτ) = c21{Xτ 6=µ}(Xτ −d)2+c31{Xτ 6=µ}|1Xτ≥µ −1d≥µ|, c2,c3 ≥ 0.

When the decision setD is finite we can also view the decision variabled in the context of hypothesis
testing. Namely,d∈D is identified with picking thed-th hypothesis aboutχ andH(d,x) represents the
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penalty for mis-identification. We refer to [11, 12] for related hypothesis testing problems of finite-state
HMMs.

The Bayes riskR in (6) is affected by the distribution of the random variableX0. Recall that the prior
distributionπ0 of the disorder time is given by

π0(A), P(X0 ∈ A) = p01µ∈A+(1− p0)F(A), A∈ B(R+),

for any Borel subsetA. Summarizing, the controller’s aim is to minimize the Bayesrisk, by computing
the value function

U (π0), inf
(τ ,d)∈S×D

R(τ ,d). (7)

In the remainder of the paper we will be concerned with computing U , as well as studying the
optimalτ∗ andd∗.

Remark 2.In much of the sequential detection literature, one is concerned with estimatingθ andχ
without any explicit reference to Bayes risk criteria. For example, a popular choice is to announce
disorder as soon as a critical thresholdb is crossed by a (running) summary statistic ofπt . Thus, a
heuristic solution is to e.g. takeτ := inf{t : E[χ |Yt ]> b} andd := E[χ |Yτ ] for appropriately chosenb.
Such threshold rules can be asymptotically justified through e.g. a quickest detection problem with a
constraint on false alarm probability [2]. In contrast, ourformulation ofR(τ ,d) incorporatesmultiple
simultaneous risk objectives, making it difficult to justify any particular threshold strategy or to come
up with a good statistic that incorporates all the risk criteria.

3 Filtering

BecauseX is not observed, (6) is not in standard form, as the rewards are not adapted to the controller’s
filtration. Applying iterated expectations and noting(τ −θ )+ =

∫ τ
0 1θ≤t dt, we obtain

R(τ ,d) = E
π0

[∫ τ

0
c1E[1Xt 6=µ |Yt ]dt+E

[
1Xτ=µ +c21Xτ 6=µ(Xτ −d)2+c31Xτ 6=µ |1Xτ≥µ −1d≥µ |

∣∣Yτ
]]

.

Furthermore, to work under the more convenient reference measureP0 we use the Radon-Nikodym
processL to re-write the performance criterion as

R(τ ,d) = E
π0
0

[
E0[Lτ1Xτ=µ +c1

∫ τ

0
Ls1Xs6=µ ds+LτH(d,Xτ)

∣∣Yτ ]

]
. (8)

This leads us to define for any smooth bounded functionf : R+ → R+

ρt f , E0[Lt f (Xt)
∣∣Yt ]. (9)

Let M (R+) be the space of allσ -finite positive measures onR+. Thenρt ∈ M (R+) is defined im-
plicitly through (9) and, as a function oft, ρ is a measure-valued process known as the unnormalized
density ofX given observedYt . Then we can re-write (8) as
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U(π0) = inf
τ∈S

E
π0
0

[∫ τ

0
ρsH1ds+ρτH2

]
, (10)

with H1(x), c11{x6=µ}, and

H2(x), 1{x=µ}+ inf
d∈D

H(d,x).

Above we have made use of the fact that conditional on the alarm time τ∗, the risk-minimizing an-
nouncementd∗ can be found by optimizing the penalty functiond 7→ H(d,Xτ∗), effectively removing
d from (10).

The new problem (10) has considerably simplified the original (6) by switching to the reference
measureP0. Indeed, underP0 the driving processesN,Y are of particularly simple form, decoupling
observations and filtering. Moreover, as we will see below, the unnormalized filterρ possesses lin-
ear dynamics as well. To analyze (10) it is now necessary to understand the dynamics ofρtH1 and
ρtH2. The following lemma gives their explicit description through the well-known Zakai equation,
see e.g. [1, Theorem 3.24], [33, p. 270], [17].

Lemma 1 (Zakai equation).Let (t,x) 7→ ft(x) be a bounded Borel function onR2
+. Then,

ρt ft = π0( f0)+
∫ t

0
ρs(A f)ds+

∫ t

0
ρs( fshs)dYs+

1
µ

∫ t

0
ρs−( fs(Λs−)−µ)(dNs−µ ds), (11)

where A is the generator of X given in(2).

Lemma 1 expresses the evolution ofρt ft in terms of stochastic integrals with respect to the driving
processesY andN. We recall that bothY and(Nt − µt) areP0-martingales, so that the drift ofρt ft is
given by the first term in (11).

For completeness we briefly recall the normalized filterπ described in the Introduction. Let
P(R+) ⊂ M (R+) be the set of all probability measures onR+. The normalized filterπt ∈ P(R+)

satisfiesπt ft = E[ ft(Xt)|Yt ] for any smoothft(x). By Bayes formula, we have the Kallianpur-Striebel
relationship

πt ft =
E0[Lt ft(Xt)|Yt ]

E0[Lt |Yt ]
=

ρt ft
ρt1

. (12)

The analogue of (11) is the Kushner Stratonovich equation:

πt ft = π0 f0+
∫ t

0
πs(A f)ds+

∫ t

0
(πs( fshs)−πs( fs)πs(hs))(dYs−πs(hs)ds)

+
1
µ

∫ t

0
(πs−( fsΛs)−πs−( fs)πs−(Λs))(dNs−πs(Λs)ds). (13)

Above, the driving processes are(P,Y )-martingales known as the innovation processesY−∫ πs(hs)ds
andN−

∫
πs(Λs)ds.
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3.1 Conditional Moments

The filtersπt ∈ P(R+) andρt ∈ M (R+) in general do not admit any finite-dimensional Markovian
sufficient statistics. Indeed, the equations (11) and (13) are not autonomous and to e.g. computeπt f
we must also computeπth, πt χ , πt(A f),πt( f χ) andπt( f h). Rather than directly working with the
measure-valuedπ (or ρ), the original method of Kalman-Bucy consisted of derivingthe dynamics of
the conditional moments ofX. For comparison we recall the following

Lemma 2.Define the unnormalized conditional momentsφ0(t) =E0[Lt1{θ≤t}|Yt ] and for k= 1,2, . . . ,
φk(t) = E0[LtXk

t |Yt ]. Let us assume that h(x) = αx. Thenφk satisfy
{

dφ0(t) = αφ1(t)dYt +(φ1(t)−µ)(dNt −µ dt)+λt(1−φ0(t))dt and

dφk(t) = αφk+1(t)dYt +(φk+1(t)−µφk(t))(dNt −µ dt)+λt(1−φ0(t))(E[χk]−µk)dt.
(14)

Proof. This result easily follows from the Zakai equation (11) after noting that forf (x, t) = 1−1{x=µ},
A f(Xt , t) = A1{θ≤t} = λt1{Xt=µ}, so thatρt(A f) = λt(1− φ0(t)). Similarly for f (x) = xk, we have
ρt(A f) = ρt(λt(Xk−µk)1{Xt=µ}) = λtE[χk−µk](1−φ0(t)) since conditional onXt = µ , χ ⊥⊥ Yt . A
similar result for the normalized moments and Wiener-only observations was given in [31, Theorem
4.2].�

Lemma 2 demonstrates that the (unnormalized) conditional moments do not constitute a closed
system of equations. Indeed, the evolution of thek-th conditional momentφk depends onφk+1 so that
the entire infinite sequence(φk(t))∞

k=0 is necessary to solve (14). The system in (14) can be closed
under some special circumstances, e.g. a finitely-supported distributionF(·) of χ that implies thatXt

has a finite state space. In that case, [3, Corollary 3.3] explicitly shows the closure equations satisfied
by the conditional moments. Alternatively, artificial closure equations can be introduced. For instance,
a Gaussian-type filter (see [31, Section 6]) can be obtained by setting the conditional centered third
moment to be zero,E[(Xt −E[Xt |Yt ])

3 |Yt ] = 0∀t which leads to an expression relatingφ3 to φ0,φ1

andφ2 and a 3-dimensional sufficient statistic. However, quantification of the corresponding error is
difficult. For this reason, in our approach we will be workingdirectly with (11) rather than (14).

The Zakai equation (11) can also be interpreted in its strongform, namely as a stochastic partial
differential equation for the density of the measureρt (or πt ). We do not detail here the additional
technical assumptions needed for such a representation, and only recall that in the case whereXt has
finite-state spaceE, the measureρt reduces to a vector onR|E| and we can directly derive its evolution,
see [33, sec. 7.3] or [1, remark 3.26]. More precisely, identify E = (e1,e2, . . .) and denote byH̃ =

diag(h) wherehi = h(ei) andΛ̃ = diag(λ ) with λi =Λ(ei). Then the column vector̃ρ = (ρ̃1, . . . , ρ̃|E|)

defined byρ̃i , E0[Lt1{Xt=ei}|Yt ] solves the linear stochastic differential equation

ρ̃t = π0+
∫ t

0
AT ρ̃sds+

∫ t

0
H̃ρ̃sdYs+

∫ t

0

(Λ̃ −µ)
µ

ρ̃s− (dNs−µ ds), (15)

whereAT is the transpose of the transition matrix ofX. Equation (15) gives a complete description of
the conditional distribution ofXt via the (unnormalized) posterior probabilities of each state ei and is
known as the Wonham filter.
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3.2 Particle Filters

As we have seen in Lemma 2, for continuous post-disorder distribution F, the filterρ does not admit
finite-dimensional sufficient statistics. To obtain a representation ofρ that is amenable to computa-
tional solution, we approximateρ through a purely atomic measure. Namely, we replace the diffuse
ρ with a particle cloudρ(n) of n particles. The dynamics ofρ(n) are described through asequential
Monte Carloprocedure that is summarized via the two main steps of mutation and selection. We refer
to [1, 5, 15] for general references on SMC methods in nonlinear filtering of Markov processes.

Our description below is based on the basic continuous-timefilter in [1, Ch. 9]. Fixn> 0; the particle

systemρ(n) = (ρ(n)
t )0≤t≤T consists of a collection ofn weightsa j (t) and corresponding locations

x j (t) , j = 1, . . . ,n. Before giving the full description ofρ(n) in (20), we first describe the evolution of
the particles.

The particles are initialized asa j(0) = 1 andx j(0)∼ π0, i.i.d. Let τ1,τ2, . . . , describe the selection
or resampling times. These could be deterministic and lie ona gridτm = mδ for some grid sizeδ or
be stochastic, e.g.τk = σk the k-th arrival time of the counting processN, or be otherwise adaptive.
Between selection times the particles undergo independentmutation according to the dynamics ofX in
(1). Thus, ifx j(τm) 6= µ thenx j(t) = x j(τm) for all t ≥ τm and ifx j(τm) = µ , then for anyt ∈ (τm,τm+1)

we have

x j(t) =

{
µ , with prob. 1−G(t)

1−G(τm)
,

χ j
m+1, with prob. G(t)−G(τm)

1−G(τm)
,

(16)

whereχ j
m+1 are i.i.d. with distributionF(·) and eachx j is independent of other particles. In the simu-

lation procedure, givenτm andx j(τm) = µ , we first generate the post-disorder locationχ j
m+1, and then

the particle’s disorder timeθ j which has distributionG|θ > τm. Given this pair, the path ofx j(t) on
[τm,τm+1) is x j(t) = µ1t<θ j +χ j

m+11t≤θ j , which clearly matches (1). Note that a newθ j is simulated
for each interval[τm,τm+1) as long asx j(τm) = µ .

The corresponding weighta j is assigned as

a j
m+1 , a j(τm+1−) = exp

{∫ τm+1

τm

log

(
x j(s−)

µ

)
dNs−

∫ τm+1

τm

(
x j(s)−µ

)
ds

}

×exp

{∫ τm+1

τm

h(x j(s))dYs−
1
2

∫ τm+1

τm

h(x j(s))2ds

}

=

(

∏
τm<t≤τm+1:∆Nt=1

x j(t−)

µ

)

×exp

{∫ τm+1

τm

h(x j(s))dYs−
∫ τm+1

τm

(
1
2

h(x j(s))2+x(s) j −µ
)

ds

}
.

(17)

Sincex j(·) is piecewise constant, both terms can be computed and simulated exactly. The first term
involving the Stieltjes integral with respect toN can be represented as a discrete product in terms of
the arrival times ofN. The second term with a stochastic integral with respect toY can be written
directly in terms of the Gaussian increments ofY. Thus, from a simulation point of view to obtain the
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collection(a j
m+1) it suffices to simulate the arrival times of the homogenous Poisson process(N,P0)

and the incrementsYθ j −Yτm andYτm+1 −Yθ j , j = 1, . . . ,n of the Wiener process(Y,P0).
Taking the normalized weights

ā j
m+1 ≡ a j(τm+1−),

a j
m+1

∑n
k=1ak

m+1

, j = 1, . . . ,n, (18)

we apply a branching or resampling procedure atτm+1, such that the particle atx j
m+1 produceso j

m+1
offspring. Each offspring inherits the parent’s locationx j(τm+1−) and, denoting by{a}= a−⌊a⌋ the
fractional part ofa∈ R+, the integerso j

m+1 satisfy∑n
j=1o j

m+1 = n with

o j
m+1 =





⌊nā j
m+1⌋, with prob. 1−

{
nā j

m+1

}
,

1+ ⌊nā j
m+1⌋, with prob.

{
nā j

m+1

}
.

(19)

Note that(o j
m+1)

n
j=1 are therefore not independent. The branching procedure in (19) is detailed in

[1, pages 226-230] and assures that the number of offspring for each particle has minimal variance
while keepingE[o j

m+1] = nā j
m+1. After the branching/re-sampling step, all weights are then reset to

a j(τm+1) = 1 and the mutation-selection loop is restarted.
Denote by

ξm ,
m

∏
ℓ=1

(
1
n

n

∑
j=1

a j(τℓ−)

)
.

The right-hand-side terms above correspond to the total sumof weights just before each branching,
which measures the fitness score of the overall particle cloud with respect to the observations on
[τℓ,τℓ+1). Then the unnormalized empirical measureρ(n) is given by

ρ(n)
t ,

ξm

n

n

∑
j=1

a j(t)δx j(t)(·), for t ∈ [τm,τm+1), (20)

so that the filter off (Xt) becomes

E0[Lt f (Xt)|Yt ]≃ ρ(n)
t f =

ξm

n

n

∑
j=1

a j(t) f (x j(t)). (21)

Note thatξm ≃ ρτm1 essentially corresponds to posterior likelihood. Accordingly, the normalized par-
ticle measure is simply

π(n)
t ,

n

∑
j=1

ā j(t)δx j(t)(·) and E[ f (Xt)|Yt ]≃
n

∑
j=1

ā j(t) f (x j(t)).

Rigorous error analysis of a continuous-time particle filter for a diffusion signalX is given in [1,
Sec. 9.4]. A key step is to establish uniform bounds on the particle weights in order to control the
empirical filterρ(n)

t f , see eq. (9.40) in [1]. We straightforwardly may obtain the same bound in our
additive jump-diffusion setup:

Lemma 3.Suppose that h andΛ are bounded and that resampling takes place everyδ time units. Then
for p= 1,2,3,4 there exist constants C1(p) that depend only on‖h‖∞,‖Λ‖∞ and T, such that for all
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s≤ T

sup
n≥0

max
j≤n

sup
s∈[0,T]

E0

[
(ξ (n)

⌊s/δ⌋a
(n), j(s))p

]
≤C1(p), p= 1,2,3,4. (22)

Proof. Working with the definition ofa(n), j(t) in (17) we have fort < δ

E0[(a
(n), j(t))p] = E0 [E1 ·exp(E2)] with

E1 =

(

∏
s≤t:∆Ns=1

(
Λ(Xs)

µ

)p
)
·e−p

∫ t
0(Λ(Xs)−µ)ds;

E2 = p
∫ t

0
h(Xs)dWs−

p
2

∫ t

0
h2(Xs)ds.

Using the boundedness ofΛ andh we find

E1 ≤
(‖Λ‖∞

µ

)pNt

eµ pt,

E2 ≤ p
∫ t

0
h(Xs)dWs−

p2

2

∫ t

0
h2(Xs)ds+

p2− p
2

t‖h‖2
∞. (23)

Using the independence ofN andY and recognizing the first term on the second line above as the
Wiener exponential martingale we obtain

E0[(a
(n), j(t))p]≤ E0

[(‖Λ‖∞

µ

)pNt
]

et(µ p+ p2−p
2 ‖h‖2

∞) (24)

≤ exp

(
δ{‖Λ‖p

∞
µ p−1 −µ +µ p+

p2− p
2

‖h‖2
∞}
)
≤ exp(C(p)δ ). (25)

Thanks to the independent mutations of each particle and theresetting property of the resampling, it
follows that for anym

E0 [(ξm)
p]≤

m

∏
ℓ=1

E0

[

∑
j

1
n

a(n), j(δ−)p

]
≤

m

∏
ℓ=1

eC(p)δ = eC(p)mδ ≤ eC(p)T .

Combining with (25) and using the Cauchy-Schwartz inequality the bound (22) follows. We observe
that the assumed boundedness ofΛ andh can be slighted relaxed, as long as sufficiently high expo-
nential moments exist.�

Lemma 3 established uniform upper bounds on the particle weights on the full horizon[0,T]. Using
it and straightforwardly adapting the proof of [1, Prop. 9.14] we obtain theO(1/

√
n) convergence rate

of the particle filtering algorithm.

Proposition 2.There exists a constant C2(T) such that for any bounded function f∈Cb(R)

E0

[
{(ρ(n)

t ( f )−ρt( f )}2
]
≤ C2(T)

n
‖ f‖2

∞, ∀t ≤ T. (26)
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3.3 Particle Degeneracy

The post-disorder rateχ is an important component of the filtering/detection problem. Being a con-
stant, its estimation is in many ways similar to estimating aparameter in a filtering model. This is in
contrast to the filtering of the disorder indicator 1{θ≤t} that is inherently dynamic. It is well known
that use of SMC methods for parameter estimation may be unstable and prone to error accumulation.
Indeed, since each particle generates its copyχ j = x j(θ j) just once, the full particle cloud does not
explore the state space ofχ beyond this first mutation. Moreover, if re-sampling is performed regularly,
with positive probability some particles will be discardedat each re-sampling step, so that ast →∞, the
empirical measureρ(n) will collapse to a single atom at some location ˇx∈ {x1(θ 1),x2(θ 2), . . . ,xn(θ n)},
rather than converging to the true locationχ .

An early solution for such particle degeneracy proposed by [20] was to allow forartificial evolution
of particles. Namely, introduce “roughening penalties”, so that x j(t) remains dynamic for all time
points, even fort ≥ θ j . More precisely, take

x j(τm+) = x j(τm)+ ε j , ε j ∼ N (0,vm),

for j such thatθ j > t, i.e.x j(τm) 6= µ . These artificial disturbancesε j can be justified through Gaussian
kernel smoothing of the posterior measureρ(n) that replace the point-masses in (21) with

ρ̃(n)
t f ,

ξm

n

n

∑
j=1

a j(t)
∫

R

f (y)K(x j(t);dy),

whereK(x,dy) is a smooth kernel satisfying
∫

yK(x,dy) = x,
∫

y2K(x,dy) < ∞. A common choice is

a Gaussian kernelK(x,dy) = 1√
2πvm

exp(− (x−y)2

2vm
)dy with a small variance parametervm. Gordon and

Salmond [20] suggestedvm = Var(1{Xτm 6=µ}Xτm|Yτm), proportional to the true variance of the signal.
With this additional kernel approximation, the branching procedure is re-interpreted as samplingn

times with replacement from the smoothed empirical measurẽρ(n)
τm− to obtain the new locationsx j(τm),

j = 1, . . . ,n.
Such kernel convolution clearly introduces additional error by increasing the empirical variance of

the particle cloud, since now the variance inρ̃n is bigger than the true variance ofXτm−|Yτm. This can
be overcome by the method of [22] who suggested kernelshrinkage, namely setting

x j(τm+) = a ·x j(τm)+ ε j , ε j ∼ N
(
(1−a)x̄(τm),(1−a2)vm

)
, (27)

for x j(τm) 6= µ , where ¯x(τm) =
∑ j x j (τm)1x6=µ (x

j (τm))

∑ j 1x6=µ (x j (τm))
is the normalized average post-disorder rate among

all particles,vm is the variance associated with ¯x(τm) anda∈ [0.95,0.999] is the shrinkage parameter.
Thus, particles experience random shocks that direct them slightly towards the empirical mean ¯x(τm)

of the other post-disorder particles. The Liu and West method [22] ensures that no additional variance
is added to the particle cloud, so that both the empirical mean and empirical variance are unaffected by
the artificial mutation. We find that this procedure providesa good means to induce further exploration
of the state space ofχ by the particle cloud in the latter stagest > E0[θ ] when most particles become
static.

A second important issue we confront is the resamplingfrequency. On the one hand, resam-
pling combats weight degeneracy which in particular allowspre-disorder particles to explore theθ -
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distribution. On the other hand, resampling adds extra noise through the sampling variance. We partly
addressed the latter issue by using the minimal-variance branching procedure. From (17) we see that if
h(Xt) is small, then the main source of weight variance is the Poisson processN, with particle weights
increasing by a factor proportional toχ at eachσk. This suggests adaptive resampling based on the
arrival times ofN, e.g.τk = σk. A heuristic resampling rule can be derived by looking at statistics of
the weight distribution becoming too low. We refer to [14] for details on possiblea(t)-statistics, such

as effective sample sizeESS= {∑n
j=1(ā

j(t))2}−1, coefficient of varianceCoV=
√

1
n ∑n

j=1{a j(t)−1}2

and entropyEnt=−∑n
j=1 ā j(t) logā j(t). Finally, it is possible to not resample at all. Such scheme with

independent particle mutation and adaptive weight assignment is known as the classical sequential im-
portance sampling (SIS) filtering algorithm, see e.g. [5]. SIS filtering is effective in the cases where
the post-disorder distribution is discrete, whereby with enough particles it is essentially equivalent to
exact filtering according to (15).

A further possibility to reduce particle degeneracy is marginalization of the disorder time using
the ideas of [6]. Namely, after each resampling, we split each pre-disorder particle into two copies,
with copy 1 conditioned to have no disorder on the next interval [τm,τm+1), and copy 2 conditioned
to have a disorder on[τm,τm+1). The weights of copyi are given by the corresponding conditional
probabilities. In other words, we marginalize the random noise in the simulation of disorder times,
similar to classical Rao-Blackwellization procedures. Note that we now would propagate more than
n particles and therefore the minimum variance branching procedure no longer applies. Instead, we
switch to standard sampling with replacement fromρ(n)

τm−, using e.g. stratified or systematic resampling
procedures from [5, ch. 7.4].

Remark 3.Note that while classical filtering paradigms work on a fixed time horizon[0,T], in our
filtering-control problem the effective horizon is[0,τ∗]. If the penalty for detection delay is significant,
we can expect that|τ∗−θ | is small, alleviating the problem of post-disorder static particle degeneracy.

4 Solving the Optimal Stopping Problem

Let us define the Snell envelope corresponding to (6),

Ut , essinf
τ≥t

E0

[∫ τ

t
ρsH1ds+ρτH2|Yt

]
,

The original problem consists in findingU0.
Restricting the stopping decision to be made at discrete time instancesτ ∈ {0,∆ t,2∆ t, . . . ,T =

M∆ t}, the discrete-time value function, which we continue to denote asUt , satisfies the recursive
equation

Ut = min(ρtH2,ρtH1∆ t +E0[Ut+∆ t |Yt ]) , (28)

with UT = ρTH2. Therefore, one may computeUm∆ t for m∆ t <T by iteratively solving (28) backwards
in time. The key step in this approach becomes (approximately) computing the conditional expectation
on the right-hand-side of (28). For later use we note that in discrete time the optimal stopping time
τ∗(t) satisfies
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Ut = E0

[
τ∗(t)−1

∑
s=t

ρsH1∆ t +ρτ∗(t)H2
∣∣Yt

]
;

τ∗(t) = t1St + τ∗(t+∆ t)1Sc
t
, St , {ρtH2 < ρtH1∆ t +E0[Ut+∆ t |Yt ]} ∈ Yt , (29)

whereSc
t is the complement of the eventSt .

In our Markov setting and in view of (11),Ut is a function ofρt , i.e., a functional on the nonlocally
compact spaceM (R+). Note that sinceY and Nt − µt are time-homogenousP0-martingales they
only affectUt through their stationary increments. As explained in Section 3,ρ is generally infinite-
dimensional, presenting a computational roadblock. Indeed, we have that the conditional expectation
E0[Ut+∆ t |ρt ] = E(t;ρt) is a function of the measure-valuedρt for some functionalE : M (R+)→ R.
Evaluating this mapE analytically appears hopeless. Here we propose to overcomethis challenge by
employing a Monte Carlo approach to (28) that additionally combines well with the SMC filtering
method for approximatingρ with ρ(n).

4.1 Integrated Algorithm

Our method is based on the Longstaff-Schwartz [23] algorithm for classical optimal stopping prob-
lems. Its key idea is to focus on the decision rule, in other words to approximate (29), rather thatUt

directly. This is achieved by replacingUt+∆ t = E0[∑
τ∗(t+∆ t)−1
s=t+∆ t ρsH1ds+ ρτ∗(t+∆ t)H2|Yt+∆ t ] with an

empirical pathwise continuation value ut+∆ t and to compute the conditional expectationE0[ut+∆ t |Yt ]

throughcross-sectional regressionof a Monte Carlo collectionuk
t+∆ t . This cross-sectional regression

approximates via

E0[Ut+∆ t |Yt ]≃
r

∑
i=1

α i(t)Bi(ρt), (30)

where(Bi(ρ))r
i=1 are the basis functions andα i(t) the corresponding regression coefficients. Thus,

we replace the conditional expectation operatorE0[·|Yt ] (characterized as theL2-minimizer) with an
L2-projection onto thespan(Bi(ρt) : i = 1, . . . , r). Comparing the regression prediction∑i α i(t)Bi(ρt)

and the immediate payoffρtH2 we then construct the approximate stopping ruleτ for (29).
The computational algorithm begins by generating a large scenario database, simulating(N,Y) un-

der the reference measureP0 and computing the approximate filterρ(n) along each realized path,

k = 1, . . . ,K, using the particle filter of Section 3.2. We then approximate Bi(ρk
t ) ≃ Bi(ρ

(n),k
t ) and

using backward recursion implement (29) by regressing the empirical (uk
t+∆ t) against the simulated

{Bi(ρ(n),k)}K
k=1. Namely,

S(K)
t =

{
ρ(n),k

t H2 < ρ(n),k
t H1 ·∆ t +∑r

i=1 α (K),i(t)Bi(ρ
(n),k
t )

}
; (31)

τk
t = t ·1

S(K)
t

+ τk(t+∆ t) ·1
(S(K)

t )c
, (32)

uk
t = ∑τk

t −1
s=t ρ(n),k

s H1 ·∆ t +ρ(n),k

τk
t

H2, (33)



16 Michael Ludkovski

whereα (K),·(t) are the empirical regression coefficients from the simulation of sizeK. Note that the
whole algorithm operates underP0 which allows for easy simulation of(N,Y) and requires only the
unnormalized filterρ(n).

Iterating witht = (M−1)∆ t down tot = 0 we eventually obtain anin-sample estimate

u0 =
1
K

K

∑
k=1

uk
0 ≃U0.

Since it is Monte Carlo based,u0 is itself a random variable and is typically slightly biased. To
avoid this, we may straightforwardly compute an out-of-sample estimator ˆu0. Indeed, it suffices to
simulate a new independent set of(Nk

t ,Y
k

t ,ρk
t )

K′
k=1 and moving forward fort = ∆ t,2∆ t, . . ., evalu-

ateρk
t H1,ρk

t H2 and the continuation value ˆqk
t , ∑r

i=1 α (K),i(t)Bi(ρk
t ) using the previously computed

regression coefficientsα (K)(t). Then comparing ˆqk and ρ(n),k
t H2 one can find the first timeτk and

setûk
0 = ∑τk−1

s=0 ρk
sH1 ·∆ t +ρk

τkH2 to be the corresponding scenario payoff. Finally, average to obtain

û0 =
1
K′ ∑K′

k=1 ûk
0, which by construction is a lower bound forU0.

We summarize the full procedure in pseudo-code in Algorithm1 in the Appendix. Let us stress
the modularity of the code that only needs an implementationof a filtering method (with particle
filters requiring only the ability to sampleXt) and a method for finding conditional expectations (with
regression Monte Carlo relying on standard least-squares regression). For the basis functionsBi(·), the
natural choices include conditional momentsBi(ρ) = ρxℓ for integersℓ, as well as nonlinear functions
of quantities appearing in (10), such asBi(ρ) = (ρ1{x=µ})

ℓ or (ρx)ℓ.

Remark 4.Subject to smoothness conditions,ρt has anL2 density with respect to the Lebesgue mea-
sure. In that case, it can be completely characterized through its action against a basis(B̃ℓ(·))∞

ℓ=1 for
L2(R+), namely as an infinite sequence(aℓ)∞

ℓ=1, aℓ , ρt(B̃ℓ). Accordingly, the functionalE can be
viewed as a function on the coordinates(aℓ) and the regression against(Bi) above is then a double
projection, first truncating to a finite number of(aℓ)r ′

ℓ1
and then projecting against a truncated basis of

L2(Rr ′).

4.2 Error analysis

Several steps of the overall algorithm above required approximation. In detail, these were: (i) filtering
error betweenρ andρ(n); (ii) projection error of approximating conditional expectation with a projec-
tion onto thespan(Bi, i = 1, . . . , r); (iii) Monte Carlo error due to finite simulation database; (iv) Snell
envelope error from making the wrong stopping decision in (31).

Observe that for the final value function, it is only the first and last errors that are intrinsically
important: even if the projection and MC errors have been made, as long as the stopping strategy is
correct they are not counted. This key observation is the motivation behind the algorithm’s focus on
(29) rather than (28).

The filtering error has been quantified in Lemma 2. Unfortunately, no sharp results are known for
the Snell envelope error, and existing methods revert to itsrecursive decomposition into the projection
and Monte Carlo errors. This produces very pessimistic theoretical error bounds and in particular
implies that the number of simulation pathsK should be exponential in number of basis functions
r. Additionally, we note that the MC and filtering errors compound each other during the regression
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step, due to the resulting error-in-variable that causes attenuated estimates ofαt . Consequently, it is
important to minimize the filtering error as much as feasible.

For a given functiong : M (R+) → R+ denote by(pr◦g)(ρ) , ∑i α̂ iBi(ρ) the true projection op-
erator ontospan(Bi, i = 1, . . . , r) and by(prK◦g)(ρ), ∑i α iBi(ρ) the empirical regression based on a
Monte Carlo sample ofρt of sizeK (thus formally, prK◦g is a random operator that is a function of

the simulation setω ′). Let Rt(g) = E0[|pr◦g(ρ(n)
t )−prK◦g(ρ(n)

t )|2]1/2 be theL2 norm of this Monte
Carlo error, where the expectation is over the possible simulation setsω ′, the particle filter realizations
ρ(n)

t and the paths of(N,Y). The following Lemma is a direct consequence of Theorem 1 in [24].

Lemma 4.Denote byÛt ≡ Ût(ρt) the approximate value function at date t computed by the algorithm
of Section 4.1. Then there exist constants C3,C4 that depend only on model parameters, such that

E0
[
|Û0−U0|2

]1/2 ≤ 4M ·C1 · max
0≤s≤T

{
‖pr◦Ûs−Ûs‖2+Rs(Ûs)

}
+

C2

∆ t
√

n
. (34)

Typically, the Monte Carlo error is of orderRt =O(K−1/2), so the algorithm accuracy is order-(−1/2)
in bothn andK. The Lemma also suggests that the number of pathsK should be exponential in∆ t.

Remark 5.The classical disorder formulation of Shiryaev [30] is on aninfinite horizon, so that there
is no specific deadline by which an announcement must be made.For a discreteF(·) and memoryless
θ , the results of [3, 25] imply that the finite horizon solutionconverges to the infinite horizon solution
exponentially fast. In general, the convergence should depend on the right tail of the distribution ofθ ;
in most practical applications this would imply (super)-exponential convergence.

From a global perspective, our algorithm employs approximation both at the filtering and optimiza-
tion steps. The errors in computing Snell envelopes via the RMC method have been studied in [16, 18].
At the same time, the functional stability of Snell envelopes with respect to the underlying process
(here we replaceρ with ρ(n)) was considered in [27, 8]. Finally, the robustness of approximating (28)
was addressed recently in [13]. However, combining these results together is difficult since no usable
quantitative results are known for therateof convergence of the Snell envelope.

5 Numerical Examples

5.1 Analysis of Particle Filter

We begin our numerical experiment with a study of the particle filter performance. To check the accu-
racy of our method we compare it against a case where an exact solution is possible, viz. a discreteF(·)
and memoryless disorder timeθ . In preparation for examples below, we assume thatθ ∼ Exp(0.5),
µ = 10 andχ is a mixture of two discretized “uniform” distributions on[3,8] and[15,25] respectively.
More precisely,

F(·) =
25

∑
i=1

0.02(δ2.9+0.2i(·)+δ14.8+0.4i(·)). (35)

We consider just Poisson observations withΛ(Xs) = Xs,h(Xs) ≡ 1; in that case the exact solution is
given by the Wonham filter (15) and can be readily computed with matrix exponentials, see [25]. Thus,
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the posterior distribution is given by the 51-dimensional vectorπ̃(t) with π̃ j (t) ≡ P(Xt = x j |Yt) and
x j ’s given in the Dirac masses of (35).

We implement a particle filter with 500 particles and resampling frequency based on CoV criterion.
In Figure 1 we show one sample path sequentially tracking theconditional expectation of the post-
disorder rateχ |Yt given observations. As expectedπt χ decreases between arrivals and jumps up at
arrival times. We observe that with 500 particles, the particle filter does an excellent job of matching
the trueχ-posterior. Also, despite the relatively high arrival rates, the observation process is still not
very informative, so that the inference problem is rather difficult. Even afterT = 5 time units, the 95%
credibility interval has width of over 4; nevertheless the convergence to the true value ofχ is evident.
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Fig. 1 Performance of the particle filter for the Poisson disorder problem withF given in (35). We
show one sample path of the conditional expectation ofχ |Yt using the exact and basic particle filter
method withn= 500. We also indicate the true arrival rateXt and the 95% quantile interval of the
particle filter posterior.

Table 1 provides further details on the performance of the particle filter. The first two columns
confirm theO(1/

√
n) theoretical convergence rate ofρ(n). The last two columns show that in this

example because of the discreteF(·) re-sampling increases the average error.

n Std. Error Resampling Freq Std. Error
500 0.103 Every step:τk = 0.05k 0.123
1000 0.074 Based on N:τk = σ2k 0.103
2000 0.053 None (SIS) 0.102

Table 1 Accuracy of the particle filter method. Standard error corresponds toE0

[
‖π̃T − π̃(n)

T ‖2

]
,

where‖ · ‖2 is the Euclidean vector norm applied to the 51-dimensional vector of true posterior

probability π̃T computed according to (15) and the approximate normalized vectorπ̃(n)
T returned by

a particle filter withn particles. Standard error based on 4000 simulated paths.
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5.2 Example 1

To be able to compare our Bayes risk computation to existing methods, we again consider sole Poisson
observations together with a discrete post-disorder distributionF(·) and exponentially distributedθ . In
that case, the filterπ is finite-dimensional and the Bayes risk problem can be approached using the tools
of [3, 25]. Thus, the drift ish≡ 1 and for simplicity, we take a BernoulliF, makingπ two-dimensional.

Our objective function is

U(π0) = inf
τ ,d

E
π0

[∫ τ

0
0.2 ·1Xt 6=µ dt+1Xτ=µ +0.3|1d>µ −1χ>µ|

]
,

whereµ = 3 andχ ∈ {2,4}. The rate of disorder isθ ∼ Exp(0.5), π0 = (0.99,0.005,0.005) and the
horizon isT = 5. As a benchmark we solve this problem using our regression Monte Carlo (RMC)
method withn= 4000 particles andK = K′ = 50,000 paths, with∆ t = 0.1 and no resampling. With
a BernoulliF(·) there is no risk of particle degeneracy and we find that resampling noticeably lowers
accuracy. We use ther = 5 basis functions,{1,ρt1{x=2},ρt1{x=3},ρt1{x=4},min(ρt1{x=2},ρt1{x=4})}
which seems a minimal requirement looking at the payoff functions. After many numerical experi-
ments, we find that adding further basis functions has a negligible effect, while using fewer than five
leads to a much larger estimate ofU0. See also [4] in this volume for new ideas on how to automate this
process. The standard error of the out-of-sample RMC estimate û0 is about 2.7·10−4, producing three
significant digits. The running time is about 2.5 hours on a 2.33GHz desktop, with the vast majority of
time spent on simulatingρ(n).

To compare, we also re-solve this problem following the algorithm in [25] which relies on a recur-
sion on the number of possible arrival timeskt = sup{k : σk ≤ T} and discretizes the state space of the
Wonham filterπ̃ ∈ {(π1,π2,π3) : πi ≥ 0,∑i πi = 1}. This approach is entirely separate from the RMC
algorithm herein, utilizing different filtering and optimal stopping techniques and is only applicable
for X a time-homogenous finite-state Markov chain. As shown in Table 2, the results are within 2%
of each other, which is acceptable. The main error seems to bedue to the time-discretization of the
integral

∫ τ
0 ρsH1ds.

Table 2 shows that in factn= 1000 particles produce essentially the same answer, while decreasing
the number of paths has mainly impact on the MC standard errorof û0. Figure 2 shows the distribution
of the optimal stopping timeτ∗. We can see thatτ∗ varies quite a lot across different scenarios, with
some paths stopping as early asτ∗ = 1, and others stopping as late asτ∗ = 4. Note that all paths stop
beforeT = 5 indicating that the finite horizon constraint is irrelevant. The interpretation of the behavior
of τ∗ is difficult, since Figure 2 shows its distribution under thereferenceP0 (where all the simulations
take place), while true observations will be underP.

5.3 Example 2

Our second example is motivated by a financial application. It has joint Poisson and Wiener observa-
tions and more involved cost functions. We consider a manager that wishes to ramp up manufacturing
of a product with demandX = {Xt}. To do so, she must set the production (supply) leveldt . Initially
demand and supply are in equilibriumd0 = X0 = µ , but at timeθ demand is expected to ramp up to
level χ . If the supplies are too highdt > Xt , over-production costs are incurred; ifdt < Xt , opportunity
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Fig. 2 Distribution of the empirical optimal stopping timeτ∗ under the reference measureP0. Out of
sample simulation withK′ = 32,000 and∆ t = 0.1.

Case Bayes RiskU(π0) MC Std. Error
LS08 0.532 –
RMC 0.542 2.7·10−4

n= 500 0.547 –
K = 5000 0.548 19·10−4

K = 10000 0.543 9.1·10−4

K = 20000 0.543 7.7·10−4

Table 2 RMC Algorithm solution for Example 1, compared to the HMM method of LS08 [25]. We
also compare the sensitivity of our method to the number of particles n and number of pathsK.
The default case hasn = 4000,K = 50,000 andr = 5. Monte Carlo standard error is based on 20
independent runs of the RMC algorithm.

costs of unmet demand result. We assume thatχ > µ a.s., so the disorder in terms ofX is always up-
wards andθ < τ leads to under-production. Based on her information so far,the manager must select
a timeτ to adjust her production levels to match the new demandχ so as to minimize these costs.

Demand is observed through two observation channels. Channel Ỹ consists of market demand for a
related product,dỸt/Ỹt = αXt dt+σdWt , where(W,P) is a Wiener process. LettingYt =

1
σ logỸt +

1
2σ t

we havedYt =
α
σ Xt dt+dWt matching the setup in Proposition 1 withh(Xt) =

α
σ Xt . ChannelN monitors

economic events that are positively correlated withX and occur at frequencyΛ(Xt) = (Xt)
2, with

N ⊥⊥W.
For the new demand levelχ we take a truncated mixture of two normal distributions,

{
χ ∼ N (5,0.5)∨3 with prob. 0.6;

χ ∼ N (4,0.25)∨3 with prob. 0.4.

and consider (non-symmetric) costs that depend on the posterior error in identifyingχ :

inf
τ∈S ,d∈R+

E

[∫ τ

0
c11{Xt 6=µ}dt+1{Xτ=µ}+c211{Xτ>d}(Xτ −d)+c221{Xτ<d}(d−Xτ)

]
.



Monte Carlo Methods for Adaptive Disorder Problems 21

Recall that in this case, the optimal new demand leveld∗
τ is thec22/(c21+c22) quantile ofXτ : P(Xτ ≤

d∗
τ |Yτ) =: c22

c21+c22
. As far as we know, there are no nonlinear filtering models that admit sufficient

statistics for posterior quantiles.
The respective costs are taken asc1 = 1,c21=

1
2,c22=

3
2. The original rate of the Poisson processN

is µ =32, and the horizon isT = 3. Finally,θ ∼Weibull(0.5,1.5) so that theθ -hazard rateλ (t)=3
√

2t
increases as the square-root of time passed.

Table 3 compares the resulting Bayes risk as we vary the observation schemes, namely the informa-
tiveness of the diffusion observation̄α := α

σ (see a related comparison for a 2-stateX in [12, Figure
9]). Largerα makes the diffusion drifth(Xs) = ᾱXs more sensitive to the signal level and therefore
aids disorder detection. Therefore, the value functionU is decreasing in̄α. We see that this effect is
quite dramatic and nonlinear, with̄α = 2 reducing Bayes risk by nearly 70% compared toᾱ = 0.

The presence of Wiener observations makes the variance of the likelihood weightsξt grow expo-
nentially over time which affects all the unnormalized filtered quantities. At the same time, the median
shrinks exponentially fast. For instance withα = 1 we have that the median ofρk

T1 is∼ 10−8, while
maxk≤K ρk

T1 > 104. Such a large spread presents numerical round-off concernsfor applying cross-
sectional regression to findα (K)(t). Accordingly, we apply regression on the normalized continuation
valuesuk ·(ρk

t 1)−1 using the normalized basis functionsBi(πk
t ). One may also apply local least squares

or nonlinear regression to overcome the different scales across scenarios.

Case Bayes risk ˆu0

ᾱ = 0 0.78
ᾱ = 0.25 0.77
ᾱ = 0.5 0.76
ᾱ = 1 0.62
ᾱ = 2 0.26

Table 3 Bayes risk and average optimal stopping time for different jump-diffusion observation
schemes. All the results are based onK = K′ = 32,000 paths with∆ t = 0.04 and particle filters
implementing the Liu-West adjustment moves withn= 1000 particles, anda= 0.99.

6 Extensions

The algorithm in Section 4.1 is certainly computationally intensive and it would be desirable to find
further speed/efficiency improvements. However, at this stage there are few alternatives to handle a
problem like Example 2 above. Most existing methods, such asthose in [25, 12] for finite HMMs
observed via point processes, are designed to handle low-dimensional optimal stopping problems and
would not apply. Certainly replacing the continuous distributionF in Example 2 with a two- or three-
point discrete approximation is a poor choice. A quantization approximation ofρ was investigated by
[29] in a simple diffusion setting, but it is arguably as computationally expensive as ours. An interesting
alternative consisting in improving the stochastic mesh method for very high-dimensional problems,
was very recently proposed by [13]. Alternatively, one can consider other curve-fitting statistical tools,
such as smoothing splines, local regression or convex regression, to refine the approximation of the set
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St in (31). In this vein, importance sampling techniques to generate more Monte Carlo samplesρ(n),k
t

in the region of interest, namely close to the boundaries ofSt , also merit investigation.
A significant advantage of our simulation-based approach isits flexibility which could be exploited

to handle many extensions of the basic model (1)-(3).

6.1 Compound Poisson Process Observations

In many practical applications, it is useful to consider a richer structure of counting process obser-
vations. Namely, we may replace the simple Poisson processN with a compound Poisson process,
or more generally a marked point process. Hence, we now assume thatN consists of a double se-
quence(σ1,Z1;σ2,Z2, . . .) where 0< σ1 < σ2 < .. . are the arrival times andZk ∈ Z are the corre-
sponding marks. Similar to the intensity ofN being driven by the signalX, we assume that the mark
distribution fZ(dz;x) depends onX. As a simple example, consider Gaussian marks with meanXt ,
P(Zk ∈ A|σk = t,Ft) =

∫
A

1√
2π

exp(−(z−Xt)
2/2)dz, A∈ B(R).

Let us assume that all the distributionsfZ(·;x) are absolutely continuous with respect to some
reference measuref 0

Z(·) (e.g. the standard Gaussian distribution in the example above). Then we
may repeat the construction of the reference probability measureP0 by starting with a canoni-
cal Poisson random measure(N,P0) with compensatorν(dt;dz) = µdt f0

Z(z)dz, i.e. the process
N([0, t]×Z )−

∫
(0,t]

∫
Z

ν(dt×dz) is aP0-martingale.
The likelihood processLt is then re-defined as

Lt = exp

{∫ t

0
hsdYs−

1
2

∫ t

0
h2

s ds

}
·exp

{∫

(0,t]

∫

Z

log
(Λs− fZ(z;Xs−)

µ f 0
Z(z)

)
N(ds×dz)−

∫ t

0
(Λs−µ)ds

}
,

so thatLσk = Lσk− · Λs−
µ

fZ(Zk;Xs−)
f 0
Z(Zk)

. The rest of the analysis proceeds as before, with straightforward ad-

justments to the particle filtering algorithm in (17). Clearly, by providing further information, presence
of marks facilitates disorder detection and will reduce theBayes risk faced by the controller.

6.2 Jump Markov Signal

In our original setup, the signal processX undergoes a single transition, representing a permanent
disorder in the signal. Practically, more complex signal dynamics may be modeled. Hence, instead
of letting X consist of a single jump timeθ and levelχ , we may imagine asequenceof disorders,
corresponding to a marked point process(θk,χk). In the simplest jump-Markov setting, we assume that
different pairs(θk,χk) are independent and have the same common distribution(G,F). Since only the
last disorder time affects the probability of the next jump,the pair(t−θ t ,Xt), with θ t = sup{θk : θk ≤
t}, remains Markov. The first componentt − θ t undergoes deterministic evolution between disorder
times, while the second componentXt is constant between disorders. SMC methods of Section 3.2
can be adapted to filter the evolution of such pair(t −θ t ,Xt), see e.g. [7, 32]. Note that the multiple
disorders inX make sure that particles are never static, alleviating particle degeneracy concerns. With
multiple disorders the measure change (3) remains the same,except thatΛs and hs are piecewise
constant.
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The above framework which has signal components undergoingdeterministic evolution between
disorder times can be extended to allow generic piecewise-deterministic, or jump-Markov process for
X. A practical example would be the shot-noise process that experiences jumps at disorder times and
decays exponentially towards a long-run mean otherwise,Xt = x̄+∑k:θk<t Zke−rk(t−θk) where rk is
the decay rate associated with thek-th jump of sizeZk ∈ R. Bayesian decision making in such more
complex models will be explored in a separate forthcoming work.
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Appendix A

Algorithm 1 Adaptive Disorder Detection using Regression Monte Carlo
Input: K (number of paths);n (number of particles per path);∆ t (time step for Snell envelope);Bi(ρ) (regression
basis functions);r (number of basis functions).
for k∈ {1,2, . . . ,K} do

Simulate standard Poisson process(Nk
t ,P0) with intensityµ, and standard Wiener process(Yk

t ,P0) on [0,T].

Samplen particles formingρk
0 ≡ ρ(n),k

0 from the priorπ0 of X0.
Use the particle filter algorithm to computeρk

t along the path(Nk
t ,Y

k
t ) for t = 0,∆ t, . . . ,T.

Initialize uk(T) = ρk
TH2, τk(T) = T.

end for
for t = (M−1)∆ t, . . . ,∆ t,0 do

Evaluate the basis functionsBi(ρk
t ), for i = 1, . . . , r andk= 1, . . . ,K.

Regress

α (K)(t), argmin
(α1,...,α r )∈Rr

K

∑
k=1

∣∣∣uk(t +∆ t)−
r

∑
i=1

α iBi(ρk
t )
∣∣∣
2
.

for k= 1, . . . ,K do
Seth1,k(t) := ρk

t H1 andh2,k(t) := ρk
t H2.

Setq̂k(t) = h1,k
t ∆ t +∑r

i=1 α (K),i(t)Bi(ρk
t ). // predicted continuation value

Setuk(t) =

{
h2,k(t) if q̂k(t)> h2,k(t);

uk(t+∆ t)+h1,k(t)∆ t otherwise.

Updateτk(t) =

{
t if q̂k(t)> h2,k(t);

τk(t +∆ t) otherwise.
end for

end for
return u(π0) ≃ 1

K ∑K
k=1 uk(0).


