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Abstract We develop a Monte Carlo method to solve continuous-tim@tgadisorder problems. An
unobserved signad undergoes a disorder at an unknown time to a new unknown [Eiwelcontroller’s
aim is to detect and identify this disorder as quickly as fidedy sequentially monitoring a given
observation proceds We adopt a Bayesian setup that translates the problem into-atep procedure
of (i) stochastic filtering followed by (ii) an optimal stojmg objective. We consider joint Wiener and
Poisson observation proces¥eand a variety of Bayes risk criteria. Due to the generalrsgtthe state
of our model is the full infinite-dimensional posterior disttion of X. Our computational procedure
is based on combining sequential Monte Carlo filtering pdoces with the regression Monte Carlo
method for high-dimensional optimal stopping problemssuts are illustrated with several numerical
examples.

1 Introduction

Disorder detection and isolation is a classical problematistical signal processing. In its adaptive
or robust form, a signaX changes at a random tinteto a random levey from its original valueu.
The signal is not observed directly, and neither @rer x. Instead, partial observations are available
in the form of an observation process whose dynamics arembyX. In this paper we consider such
an adaptive disorder problem in continuous time with antaddjump-diffusion observation process
whose drift and jump rate depend &n More precisely, the observations consist of two indepatde
channels, with channel | observingin Gaussian white noise and channel Il observing a counting
process withX-dependent intensity.

We focus on a Bayesian risk-minimization problem wherebypatoller, based on her up-to-date
observations, is asked to sound an alarm, followed immelgliatith an announcement. The timing of
the alarm should be as soon as possible after the disordeftand the announcement should match
the new levely. Hence, the controller faces a dynamic control problem afosing an alarm time
and announcemedtto minimize her risk criterion. The risk is measured throagbayesian expected
cost function based on the posteriorsfodnd x. Namely, starting from the given Bayesian priors for
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(8, x), the posterior distributior of X is derived sequentially given observations up to dayeelding
an optimal stopping problem far.

The Bayesian formulation is relatively under-used in thguemtial detection literature because in
the absence of finite-dimensional statistics fpwe must work directly with the nonlinear filtering
equations. Here we resolve this challenge by providing &aiefit computational approximation al-
gorithm for minimizing Bayes risk that preserves the keytdess of tracking the full posterior and
solving a dynamic control problem. Moreover, the Bayesitns allows us to rigorously quantify the
trade-off between multiple risk criteria, as well as inptibpinformation about the disorder distribu-
tion that is often available in practice.

Filtering in continuous-time semimartingale models is bwra classical topic rooted in the seminal
works of Jacod, Kushner, Zakai and others in 1970s. Unifiedgmtation of additive jump-diffusion
models is available in [33] and the recent articles [17, I®pur case the sign& is of particularly
simple form, consisting of a single-arrival point procddsvertheless, while a variety of observation
models have been treated, the vast majority of literatuseirass a parametric setup, namely taking
the post-disorder levet as known, whereby only estimation of the disorder tithes required. An
exception are the inspiring works by [3] for adaptive Pomsdeorder and [31] for adaptive Wiener
disorder case. A different strand in sequential analysisamalyzed change point detection problems
(estimating® only) with unknown post-disorder levels in discrete-tirdé [ 26].

The need to estimate the constant post-disorder pevglrelated to the problem of parameter esti-
mation in hidden Markov models (HMM). Maximum likelihoodeaitment of this problem is possible
using the EM algorithm, see [17]. However, for Bayes riskeckiyes the point estimates such maxi-
mum likelihood procedures provide are inappropriate,ilagkhe estimate uncertainty and sequential
updating that is required. More relevant for us is theretbeeclass of sequential Monte Carlo (SMC)
methods [15] for nonlinear filtering. These methods, eglyaiommon for discrete-time models, ap-
proximaterr with an empirical particle cloud that is sequentially prgated according to a mutation-
selection procedure. Similar to our disorder setting, @@, 7] considered SMC filtering of jump
Markov processes, while [19, 32] studied tracking appiicet in engineering that require SMC filter-
ing of piecewise deterministic processes observed in Gaus®ise. The reference volumes [5] and
[1] summarize the current state-of-the-art of SMC.

From the control perspective, our setup is closely alignigkd @ptimal stopping of continuous-time
HMMs which goes back to the original disorder problem posgdhiryaev in 1960s [30]. Histor-
ically, the focus has been on analytic methods that assummerkly and exponentially distributed
0, see [28, 10, 12]. In the recent paper [25] the author togetilith S. Sezer considered a general
optimal stopping problem with similar risk objectives anmid3onian observations for a genéfiitte-
dimensionahidden Markov chairX.

In this paper we generalize the previous models for PoisadriVéiener disorders in [3] and [31]
respectively, to provide a computational framework for imizing Bayesian risk in adaptive disorder
problems. Thus, we allow for simultaneous observationsmdiat-process and diffusion channels, as
well as arbitrary disorder time and post-disorder raterithistions. Finally, we permit a wide variety
of Bayes risk functions, including most of those proposetth@literature, such as probability of false
alarm, detection delay, and penalty for mis-identifying gost-disorder rate. In our general setting the
resulting filtering problem is infinite-dimensional whiokalds to a stopping problem with measure-
valued state variables. We resolve these challenges hindjnkgether the aforementioned literatures
on SMC methods for change-point detection and the recentlaiimn-based algorithms for optimal
stopping, see e.g. [16, 23]. More precisely, we propose pasticle filters for the filtering step
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and regression Monte Carlo for the optimization step. Tkaakhese choices, our numerical scheme
is fully Monte Carlo based, and generates computationaieffties by integrating the filtering and
Snell envelope calculations. Moreover, the algorithm susi to model specification, requiring only
the ability to simulate the underlying stochastic process®d likelihood ratios. This approach was
first proposed in [24] in the context of classical nonlinetderfing of diffusions. Herein we adapt it
to the robust disorder problem which requires significanusichents both in the model setup and
computational implementation.

Besides theoretical interest, the (adaptive) disorddrlpro has numerous applications in reliability
theory, threat detection, and finance and insurance inegdtdecisions. We refer to [25] for a cata-
logue of problems that correspond to optimal stopping of riiglly observed Markov chain which
is a finite-dimensional version of our setup. Let us highlityto typical examples. In cyber-security,
a controller must detect and identify unusual network taffiat might be a sign of a security intru-
sion. Depending on network volume, packet trafficould be modeled either as a point process or
as a Brownian motion (or a multi-scale combination of the)tWidne main trade-off is then between
detection delay and frequency of false alarms.

In real options, project manager must decide on her staitugstments to match the demand level.
Consider a novel technology product for which the demanellgses fromy to x at some unknown
date6. The manager must identify and8 as close as possible in order to minimize lost profit oppor-
tunities while avoiding over-capacity. Managers makerttetisions by monitoring market conditions
that are observed through frequency of positive economgnitsy as well as a related index that is
modeled as a Brownian motion with drift.

The rest of the paper is organized as follows. In Section 2neeige a rigorous formulation of our
Bayesian adaptive disorder problem, in particular follogvihe reference measure approach of [3].
Section 3 is devoted to the filtering sub-problem, while B&c4 describes the optimal stopping sub-
problem. Taken together, these sections provide a comgésteription of our numerical algorithm,
which is summarized in pseudo-code in the Appendix. Se&iiblastrates our approach with several
numerical examples. Finally, Section 6 points out posgif@reralizations and directions for future
research.

2 Problem Formulation
2.1 Canonical setup

Let(Q,.%#,Py) be a probability space supporting a Poisson prollesg N;;t > 0} with given intensity
u > 0 and an independent Wiener procé&ss- {Y;;t > 0}. The arrival times ofN are denoted as
01,09,.... We assume that this space in addition supports two pos#irndom variable® and x,
independent o andY. The distribution ofy is F (-) and the distribution of is G(-). We assume th&
is absolutely continuous except possibly for a point masgeifht pp at zero, so thaPy(6 = 0) = po.
All of u,F, G are assumed known.

The quantitiesd and x are used to define the signal procé&ssNamely, X is given by the right-
continuous, piecewise-constant process

X =Ulico+ Xli>g, t2>0. 1)
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Because( and 6 are independent, the pdix;,t) form a Markov process. More abstractl,can be
viewed as a simple point process with a single arrival tBrend corresponding mark.

Thanks to absolute continuity @, we may define the hazard ratgof 8 via A; £ 1?(28)- In the
special case wheré is a mixture of the point mass at zero and an exponeBtxgiA ) distribution,
At = A is constant, making a time-homogenous continuous-time Markov chain.

We denote by = {% },. 4 the right-continuous augmentation of the natural filtnatia(Ns, Ys : 0 < s <'t)

of (N,Y) and define the extended filtratidh= {Zt}1>0 Where

FE2%Va{0,x}, t>0.

The signalX is a.7-semimartingale. Let us define tliy,.#) square-integrable martingale

M; = 1g<t — Asds
- 0

t
- 0

Then the indicatoE; = 19 admits the decomposition (see [31])
dE = A (1—E)dt+dM,
and comparing with (1) we obtain the semi-martingale regmtgtion ofX as
dX = Au(x — %) dt+ x dM. )

We remark that in (2M is independent ol andY.

The generatoA of the Markov proces§X;,t) [9] is given through its action on a smooth function
f(x,t) as

d "
(AN = 21060 + Ly [ {0 = (0} F(dy).
+

In particularAf(X%,t) = A [f(x,t) — f(X,t)]. In the special case whelg ) is discrete, placing mass at
£ > 1 points X is a finite-state inhomogeneous Markov chain taking el values and its generatéy
(also known as the transition matrix) is @ 1) x (¢+ 1) matrix. Under the additional assumption of

exponential disorder tim@, this classical case corresponds to a continuous-time HMd/istreated
in detail in e.qg. [3, 25, 17].

2.2 Physical probability P

The reference probability measuPg is a theoretical device and our problem is in fact under the
physical measurR. In this section we construétfrom Py through a change of measure.
Consider the Doleans-Dade exponential martingale

Ly =& (h-Y)&(A -N)

_ exp{/ot hedYs — %/Ot hgds}exp{/ot Iog(ATs)st—/ot(/\s—u)ds}, 3)
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whereh andA are two.ZX-measurable functions. L&t < o« be a given problem horizon. Assuming
thatEg[Lt] = 1, i.e.L is a truePp-martingale or]0, T] we define thePp-equivalent measur® via its
Radon Nikodym derivative

dp

—| =L 0<t<T. 4
dPO% 1) =t > ()

ThePp-martingalel solves the stochastic differential equation

d—LS = hs—dYs+As_ —H
Ls

(dNs— pds), (5)

and is closely related to the likelihood processes fromssiedl signal processing. It will also play a
crucial role in our particle filtering algorithms in Secti8R. The following proposition (compare [1,
Prop 3.13)) is classical and motivates our construction.

Proposition 1. The following hold undep:

e The process - [3 Asds is a(P, % )-martingale.
e The process W2 Y, — [ hsds is a(P, % )-Wiener process, independent of N.
e The signal X is not affected, i.€.) and(2) continue to hold.

To summarize, unddP, the counting procedd has stochastic intensitf; (also known as a Cox
process) and the continuous procégso longer independent df) satisfies the additivito stochastic
differential equatiory; = f3 hsds+W.

We will work with the Markov case)s = h(Xs) andAs = A (Xs). By relabeling the state-spaceXf
we may assume without loss of generality thdk) = x = x is the identity map, an assumption already
reflected in (1). As a concrete exampiex) = ax matches the classical Kalman-Bucy models in the
filtering literatures. Thus, we interprtX) as the drift ofY, andX as the intensity oN underP. The
controller operates und&and has access only to the observable filtraf#pr= g(N,Y). In contrast,
the full information in the model is conveyed b¥%; = % Vv 0(Xs: s<t). Observe that unde®, it is
impossible to fully detect the drift of or the intensity oN so the controller hagartial information.

In the above Markovian case, to guarantee thiata truePo-martingale we need the same property
for each of the two terms in (3). For the diffusion term, a tgbisufficient condition is Novikov's,

Eo [exp{%/oT hz(Xs)ds}] < oo,

and reduces tio[exp{3(T — 6)h?(x)}] < «. Whenh(x) = ax s linear, it is equivalent to existence
of exponential moments fgy2. For the jump term, a sufficient integrability condition is

N A (Xg) o)X
E A\ |y M T8+ 1 < Eo[e™X] < o,
0 k|:|1 r o[ } o[e'X]

where the first equality used the fa¢t ~ PoissoriuT). Thus, it suffices to have a moment generating
function for x with radius of convergence bigger th@an

Remark 1We note that the above observation scheme is equivalent geraig a single jump-
diffusion channely with the dynamicgdY; = h;dt + dW + dN. Since the paths of hsds+W are
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continuous a.s., while the paths Nfare discontinuous a.s., the controller can then decompasie b
her observations intg = Y°¢+YY, Y® = [hsds+W =Y andY? = N as above.

2.3 Bayes Risk

The aim of the controller is to minimizesk related to the disorder. She does so by stopping the
observations at a certain alarm timeoupled with an announcemeahfibout the post-disorder level.
Both 7 andd are selected dynamically based on observed data, leadangtthastic control setup.

We focus on three types of risk: (i) risk of false alarms thetwr by early announcements before
actual disorder timé; (i) risk of detection delay that occurs when the annourneetis afterd; (iii)
identification risk due to wrong announcement about the-gisstrder rate\. The corresponding cost
functions are frequency of false alarms, detection delaalg and penalties for mis-identification of
A. The controller will select the paiiT,d) to minimize the expected Bayes risk of these competing
objectives.

Let the control variables be the alarm timand the decisiod, wherert € [0, T] andd € D for some
given subseD € R,.. Let.¥ be the set of alf’-stopping times smaller thah. Since the controller
has access only to th# -filtration, it is required that € . andd € %;. Our Bayes risk objective is
then to minimize

R(1,d) £E [17 0y +Co(T—0)4 +H(d,Xp)], (6)

where(x); = max(x,0). Abovec; > 0 is a constant related to the penalty for detection delay, an
H(d,x) is the penalty for making the announcementhen the true state ks Without loss of gener-
ality, we normalize the cost of false alarms to 1.

The decision variabld corresponds to the decision-maker’s bgpstssabout the value ok. How-
ever, rather than being simply the maximum likelihood eatan(or the conditional mean) ¢f, this
announcement is chosen to minimize the given risk criteiHdd, x). Three representative criteria we
consider are:

1. The mean squared error betwgerandd, H(d, Xr) = 1i7>g) (X7 — d)?, leading to candidate an-
nouncemend* (1) = E[X;|%7,0 < 1J;

2. Directional discrepancy betweerand x relative toy, H(d, Xr) = 1¢r>gy|1x,>u — La>pl, leading
tod* > p if and only if P(X > u|%) > 1/2, and piecewise linear stopping cost®of > u|%7) A
(1-P(x = %))

3. Signed absolute difference betwegrand x, H(d,x) = c11fq)(d —X) 4+ C21lpxeqy (X — d) with

candidate announcematitas the quantil@®(X; < d*|#;) = CleCZ.

We emphasize that when a mixture of the above stopping ieriéee used, the optimal announcement
d* will be a weighted average of the candiddts, but can always be straightforwardly computed in
any given model. To fix ideas, for the remainder of this sectie will consider the mixed weighted
penalty,

H(d,X;) = Czl{xﬁg“}(xr — d)2+ C31{X17éu}|1XrZH — 1d2ll|’ Cp,c3 > 0.

When the decision s&tis finite we can also view the decision variallia the context of hypothesis
testing. Namelyd € D is identified with picking thel-th hypothesis aboy¢ andH (d, x) represents the
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penalty for mis-identification. We refer to [11, 12] for ridd hypothesis testing problems of finite-state
HMMs.

The BayesrisiRin (6) is affected by the distribution of the random variakje Recall that the prior
distributiong of the disorder time is given by

m(A) £P(Xo € A) = polyea+ (1—po)F(A),  Ac B(R,),

for any Borel subseA. Summarizing, the controller’s aim is to minimize the Bayisk, by computing
the value function
U £ inf R(1,d). 7
(T0) L P (1,d) (7)

In the remainder of the paper we will be concerned with comgut/, as well as studying the
optimal t* andd*.

Remark 2In much of the sequential detection literature, one is corexk with estimatingd and x
without any explicit reference to Bayes risk criteria. Feample, a popular choice is to announce
disorder as soon as a critical threshblis crossed by a (running) summary statisticrpf Thus, a
heuristic solution is to e.g. take:= inf{t : E[x|%] > b} andd := E[x|#%4] for appropriately chosein
Such threshold rules can be asymptotically justified thihoeigy. a quickest detection problem with a
constraint on false alarm probability [2]. In contrast, éamulation ofR(7,d) incorporatesnultiple
simultaneous risk objectives, making it difficult to jugtdny particular threshold strategy or to come
up with a good statistic that incorporates all the risk cidte

3 Filtering

Becaus& is not observed, (6) is not in standard form, as the rewaels@radapted to the controller’s
filtration. Applying iterated expectations and notifig— 6) . = [; 1g<¢ dt, we obtain

T
R(t,d) = E™ [/0 C]_E[lxt#ﬂgt] dt+E [1Xr:H —{—Cglxﬁg“(xr — d)2+031Xr7éu|1Xr2u — leHH %]] .

Furthermore, to work under the more convenient referen@sorePy we use the Radon-Nikodym
procesd. to re-write the performance criterion as

T
R(1,d) =EP [Eo[Lrlxr_u + Cl/o Lslxzyds+ LeH(d, X;) |@4]} : (8)
This leads us to define for any smooth bounded functio® ; — R,

puf £ EolLef ()| . ©)

Let .# (R, ) be the space of ath-finite positive measures dR,. Thenp; € .#Z (R, ) is defined im-
plicitly through (9) and, as a function of p is a measure-valued process known as the unnormalized
density ofX given observed4. Then we can re-write (8) as
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U () :T@; Eg [ / psH1ds+ pTHg} (10)

with H]_(X) £ Cll{x#“}, and
Ha(X) = 1{X:H} +cil|glgH (d,x).

Above we have made use of the fact that conditional on thenaleme 7*, the risk-minimizing an-
nouncemend* can be found by optimizing the penalty functidm— H (d, X;+), effectively removing
d from (10).

The new problem (10) has considerably simplified the origfaby switching to the reference
measuréPy. Indeed, undePg the driving processel,Y are of particularly simple form, decoupling
observations and filtering. Moreover, as we will see beltw, unnormalized filtep possesses lin-
ear dynamics as well. To analyze (10) it is now necessary terstand the dynamics @gfH; and
pH2. The following lemma gives their explicit description thigh the well-known Zakai equation,
see e.g. [1, Theorem 3.24], [33, p. 270], [17].

Lemma 1 (Zakai equation).Let (t,x) — f;(x) be a bounded Borel function &2 . Then,

it t t
pife = nb(fo)"‘/o Ps(Af)dS+/() Ps(fshs)dYs‘f‘%/o Ps—(fs(As-) — ) (dNs— pds), (11)

where A is the generator of X given(B).

Lemma 1 expresses the evolutiongf; in terms of stochastic integrals with respect to the driving
processe¥ andN. We recall that botty and(N; — ut) arePp-martingales, so that the drift @ f; is
given by the first term in (11).

For completeness we briefly recall the normalized filteidescribed in the Introduction. Let
Z(Ry) C 4 (Ry) be the set of all probability measures Bn.. The normalized filterg € Z(R.)
satisfiesrt fy = E[fi (X )| %] for any smoothf;(x). By Bayes formula, we have the Kallianpur-Striebel
relationship

Eo[Lt ft (X)| %] pift

if = = .
" Eolld# ol

(12)
The analogue of (11) is the Kushner Stratonovich equation:
rf=rfo+ [ m(Ands+ [ (7t ~ (1 e(he) (4% - e(h) 3
2 [ (e (129~ (97 (A9) (AN (A9 dg. (19

Above, the driving processes &t %')-martingales known as the innovation procedses| 1(hs) ds
andN — [ 15(As)ds
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3.1 Conditional Moments

The filterst € Z(R;) andp, € .# (R ) in general do not admit any finite-dimensional Markovian
sufficient statistics. Indeed, the equations (11) and (¥8hat autonomous and to e.g. compgé
we must also computeh, 1tx, 7£(Af), 7%(fx) and rg(fh). Rather than directly working with the
measure-valued (or p), the original method of Kalman-Bucy consisted of derivihg dynamics of
the conditional moments of. For comparison we recall the following

Lemma 2. Define the unnormalized conditional momemf ) = Eo[Li1(g<;| %] and fork=1,2,...,
(1) = Eo[LXX| %]. Let us assume thatk) = ax. Theng satisfy

{d%(t) = a@(t)d¥ + (@u(t) — u)(dN — pdt) + A(1— @(t))dt  and
di(t) = o @1 (1) ¥ + (P2 (t) — L@(t)) (AN — pdt) + A (1— @o(t)) (E[x"] — p¥) dit.

Proof. This result easily follows from the Zakai equation (11) afteting that forf (x,t) = 1— 15,
AT(X,t) = Aljg<ty = Mlpx—p), SO thatpr(Af) = A(1— go(t)). Similarly for f(x) = X, we have
Pr(AT) = pr(A(XK— t9) Lpx—py) = ME[x* — 1¥)(1— @(t)) since conditional on = 1, x AL %. A
similar result for the normalized moments and Wiener-ordgayvations was given in [31, Theorem
4.2].0

(14)

Lemma 2 demonstrates that the (unnormalized) conditiormhemts do not constitute a closed
system of equations. Indeed, the evolution ofltkte conditional momengy depends o, 1 So that
the entire infinite sequendgx(t))y_, is necessary to solve (14). The system in (14) can be closed
under some special circumstances, e.g. a finitely-suphdisgributionF () of x that implies thatx;
has a finite state space. In that case, [3, Corollary 3.3j@iplshows the closure equations satisfied
by the conditional moments. Alternatively, artificial clme equations can be introduced. For instance,
a Gaussian-type filter (see [31, Section 6]) can be obtaiegktiing the conditional centered third
moment to be zerdZ[(X% — E[X|%])%|%] = Ovt which leads to an expression relatiggto @, @
and @ and a 3-dimensional sufficient statistic. However, quaraifon of the corresponding error is
difficult. For this reason, in our approach we will be workigigectly with (11) rather than (14).

The Zakai equation (11) can also be interpreted in its stfong, namely as a stochastic partial
differential equation for the density of the measpygor 1t). We do not detail here the additional
technical assumptions needed for such a representatidrgrdy recall that in the case whe¥e has
finite-state spack, the measurg, reduces to a vector dR/El and we can directly derive its evolution,
see [33, sec. 7.3] or [1, remark 3.26]. More precisely, ifierf = (e;,€,...) and denote by =
diag(h) whereh; = h(g)) andA = diag(A) with A; = A(g). Then the column vectg = (1, ... ,PE|)
defined byg; = Eo[Lt1ix—q}|%] solves the linear stochastic differential equation

(A—p)
u

t t t
po=ro+ [ ATpsds+ [ FApdvrt [ Ps- (dNs— pids), (15)
whereAT is the transpose of the transition matrix)f Equation (15) gives a complete description of
the conditional distribution oX; via the (unnormalized) posterior probabilities of eachiestpand is
known as the Wonham filter.
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3.2 Particle Filters

As we have seen in Lemma 2, for continuous post-disorderilalisiobn F, the filter p does not admit
finite-dimensional sufficient statistics. To obtain a reygrtation ofp that is amenable to computa-
tional solution, we approximate through a purely atomic measure. Namely, we replace thasiff
p with a particle cloudp™ of n particles. The dynamics gi™ are described throughsequential
Monte Carloprocedure that is summarized via the two main steps of nmmtatnd selection. We refer
to [1, 5, 15] for general references on SMC methods in noalifikering of Markov processes.

Our description below is based on the basic continuousftitaein [1, Ch. 9]. Fixn > 0; the particle
systemp(" = (p[(n))ogth consists of a collection ofi weightsal (t) and corresponding locations
xl(t), j =1,...,n. Before giving the full description g™ in (20), we first describe the evolution of
the patrticles.

The particles are initialized asd (0) = 1 andx! (0) ~ 71, i.i.d. Let 11, To, ..., describe the selection
or resampling times. These could be deterministic and lia grid 7, = md for some grid sized or
be stochastic, e.gx = gk the k-th arrival time of the counting proce$§ or be otherwise adaptive.
Between selection times the particles undergo indepemdetattion according to the dynamicsXin
(1). Thus, ifx! (1) # u thenx (t) = xI (1y,) for allt > 1, and ifx) (1) = p, then for anyt € (T, Tme1)
we have

. U, with prob. { ,
= {i e L ao
m10 :

Where)(,{1+1 are i.i.d. with distributiorF () and each! is independent of other particles. In the simu-

lation procedure, giveny, andx! (1) = u, we first generate the post-disorder Iocaljgml, and then
the particle’s disorder timé@! which has distributiorG|8 > 1, Given this pair, the path of (t) on
[Tm, Tmi-1) i X (t) = pudi_gi + X, 1Li<gi, Which clearly matches (1). Note that a néWis simulated
for each interva[tm, Tmy1) as long ax! (1) = p.

The corresponding weiglat is assigned as

a’rjn+1 £ al (tny1—) = eXP{/T:M log (#) dNs— /:Hl (X(s) — ) ds}
x exp{ /T ™ (s)) dYe— % /T e h(xj(s))zds}

_< n xJ‘(t—))
Im<t<Tmy1:AN=1 H

X exp{/:mh(xj (s))d\(s—/rr:n+1 (%h(xj(s))erx(s)j —u) ds}.
17)

SincexI(-) is piecewise constant, both terms can be computed and seduaactly. The first term
involving the Stieltjes integral with respect kb can be represented as a discrete product in terms of
the arrival times ofN. The second term with a stochastic integral with respedt ttan be written
directly in terms of the Gaussian increment¥'ofThus, from a simulation point of view to obtain the
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collection(arjnH) it suffices to simulate the arrival times of the homogenousgem proceséN, Pp)
and the incrementé; — Yr,, andYy, , —Yyj, j = 1,...,n of the Wiener proces¥, Po).
Taking the normalized weights

A arjn-i—l
Ton k

2k=18mi1
we apply a branching or resampling procedurenat;, such that the particle zxﬂn+1 producesa,jn+l
offspring. Each offspring inherits the parent’s locatidfity; 1—) and, denoting byfa} = a— |a] the
fractional part ofa € R, the integer®}, , satisfyy_; o} ., = nwith

a—Jr-nJrl =73 (Tm1—) j=1,...,n, (18)

, Ln_j |, with prob. 1— nal ,
N _ {1 Am i1 { am+1} (19)
+

m Lnfij@ﬂ , with prob. {n%+l}.

Note tha‘t(oﬂnﬂ)'}‘:1 are therefore not independent. The branching procedur#9ni¢ detailed in
[1, pages 226-230] and assures that the number of offspoingéch particle has minimal variance
while keepingE[o,ﬁqH] = ni‘ml. After the branching/re-sampling step, all weights aretheset to

al(tmy1) = 1 and the mutation-selection loop is restarted.

Denote by
m 1 n .
En2 ~“ya(rn-) ).
<fil5h

The right-hand-side terms above correspond to the total&wweights just before each branching,
which measures the fitness score of the overall particledcleith respect to the observations on
[T/, Ts41). Then the unnormalized empirical measpf® is given by

pt(n) = E_rr]n Z aj (t)dd (t)()7 for te [Tn'b Tm+1)7 (20)
=1

so that the filter off (X;) becomes
3 @014 (0). (21)

Note thatém =~ pr,, 1 essentially corresponds to posterior likelihood. Accogliy, the normalized par-
ticle measure is simply

n n .
VS aM8i()  and B[]~ Y @O F(D).
=1 =1
Rigorous error analysis of a continuous-time particleffiftg a diffusion signalX is given in [1,

Sec. 9.4]. A key step is to establish uniform bounds on thégbamweights in order to control the
empirical filterpt(”)f, see eq. (9.40) in [1]. We straightforwardly may obtain thene bound in our
additive jump-diffusion setup:
Lemma 3. Suppose that h anl are bounded and that resampling takes place ewdigne units. Then
for p=1,2,3,4 there exist constants;(p) that depend only ofih||«, |||« and T, such that for all
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supmax sup Eg (EL(Q/)éJa(”)’j(s))p] <Cy(p), p=1234. (22)

n>0 <N sc(o,T]
Proof. Working with the definition of(":1(t) in (17) we have fot < &

Eo[(@™1(t))P] = Eo[é1-exp(&)]  with

p
éal_( M (M) ).epfé(/\(xs)u)ds,
s<t:ANs=1 H

t t
&= [ hogydwe— > [ %) ds

Using the boundedness Afandh we find

b < <—”A”°°)pNe~pt,
U
p2

t 2t _
& <p [ nxgawe— 2 [ 1206 ds+ TP n2. @3)

Using the independence 6f andY and recognizing the first term on the second line above as the
Wiener exponential martingale we obtain

i PN 2
Eol(a™] (1))P] < Eq (H/L”w) ]et(um”—g—”lhlé) (24)
AllR 7 —
<ep(sll0l it EPINE) ) <exome).  @9)

Thanks to the independent mutations of each particle antethedting property of the resampling, it
follows that for anym

Eo[(En)") < ﬁlEo

5 Lamisoyp| < ﬁ CPI5 _ (LPImS — (LPT
7 N -1

Combining with (25) and using the Cauchy-Schwartz inequdtie bound (22) follows. We observe
that the assumed boundednesg\oindh can be slighted relaxed, as long as sufficiently high expo-
nential moments exist

Lemma 3 established uniform upper bounds on the particlgivt®on the full horizonO, T]. Using
it and straightforwardly adapting the proof of [1, Prop.4.We obtain theZ(1/,/n) convergence rate
of the particle filtering algorithm.

Proposition 2. There exists a constant( ) such that for any bounded function=fCy(RR)

B[ (1 -a(0y] < ADjrz, v, (26)
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3.3 Particle Degeneracy

The post-disorder ratg is an important component of the filtering/detection pranl8eing a con-
stant, its estimation is in many ways similar to estimatirgpeameter in a filtering model. This is in
contrast to the filtering of the disorder indicataid;) that is inherently dynamic. It is well known
that use of SMC methods for parameter estimation may be hiestad prone to error accumulation.
Indeed, since each particle generates its gppy: xI (61) just once, the full particle cloud does not
explore the state space phbeyond this first mutation. Moreover, if re-sampling is penied regularly,
with positive probability some particles will be discardgeach re-sampling step, so that as «, the
empirical measurp™ will collapse to a single atom at some locatios {x1(81),x2(62),...,x"(8M)},
rather than converging to the true locatipn

An early solution for such particle degeneracy propose®by\as to allow forartificial evolution
of particles. Namely, introduce “roughening penaltiesy,teatx! (t) remains dynamic for all time
points, even fot > 6. More precisely, take

X (Tmt) = X (1) + €, el ~ N (0,Vim),

for j suchthaB’ >t,i.e.x (1) # u. These artificial disturbances can be justified through Gaussian
kernel smoothing of the posterior measpf® that replace the point-masses in (21) with

ATE S a0 [ 1K ey,

whereK (x,dy) is a smooth kernel satisfyinflyK(x,dy) = x, [y?K(x,dy) < «. A common choice is
a Gaussian kerné (x,dy) = ——~— exp(— (szz)dywith a small variance parametef. Gordon and

\/Zan
Salmond [20] suggestegh = Var(lix, X, Zr,), Proportional to the true variance of the signal.

With this additional kernel approximation, the branchimggedure is re-interpreted as samplimg

times with replacement from the smoothed empirical mea;sm_eto obtain the new locationd (1),
ji=1,...,n.

Such kernel convolution clearly introduces additionabeby increasing the empirical variance of
the particle cloud, since now the varianceais bigger than the true variance ¥f,,—|#4,,. This can
be overcome by the method of [22] who suggested keshiehkage namely setting

X(tmt)=a-X(tm)+€&, &~ ((1-a)Xtm),(1—a2)Vm), (27)

. - x] J
or ) 1 hereni) = E )
all particles v is the variance associated witfry,) anda € [0.95,0.999 is the shrinkage parameter.
Thus, particles experience random shocks that direct ttighitlg towards the empirical meax( 1)
of the other post-disorder particles. The Liu and West na{B&8] ensures that no additional variance
is added to the particle cloud, so that both the empiricalmaea empirical variance are unaffected by
the artificial mutation. We find that this procedure providaegpod means to induce further exploration
of the state space gf by the particle cloud in the latter stages Eq[0] when most particles become
static.

A second important issue we confront is the resampfieguency On the one hand, resam-
pling combats weight degeneracy which in particular all@ses-disorder particles to explore tie

is the normalized average post-disorder rate among
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distribution. On the other hand, resampling adds extraenthiough the sampling variance. We partly
addressed the latter issue by using the minimal-variarexeching procedure. From (17) we see that if
h(X;) is small, then the main source of weight variance is the Baigsoces, with particle weights
increasing by a factor proportional pp at eachoy. This suggests adaptive resampling based on the
arrival times ofN, e.g.1x = ok. A heuristic resampling rule can be derived by looking atistias of
the weight distribution becoming too low. We refer to [14t ftetails on possibla(t)-statistics, such
as effective sample siZeSS= {z’j‘:l(éj (1))?} 71, coefficient of varianc€oV = \/% z?;l{ai (1) —1}2
and entropfEnt= — Z?:leij (t)logal (t). Finally, it is possible to not resample at all. Such scheritie w
independent particle mutation and adaptive weight asségriie known as the classical sequential im-
portance sampling (SIS) filtering algorithm, see e.g. [3F Bltering is effective in the cases where
the post-disorder distribution is discrete, whereby witlowgh particles it is essentially equivalent to
exact filtering according to (15).

A further possibility to reduce particle degeneracy is nratgzation of the disorder time using
the ideas of [6]. Namely, after each resampling, we splihgare-disorder particle into two copies,
with copy 1 conditioned to have no disorder on the next irdel, Tmy1), and copy 2 conditioned
to have a disorder ofty, Tm+1). The weights of copy are given by the corresponding conditional
probabilities. In other words, we marginalize the randors@dn the simulation of disorder times,
similar to classical Rao-Blackwellization procedurestéNthat we now would propagate more than
n particles and therefore the minimum variance branchinggutare no longer applies. Instead, we
switch to standard sampling with replacement frpﬁﬁ_, using e.g. stratified or systematic resampling
procedures from [5, ch. 7.4].

Remark 3Note that while classical filtering paradigms work on a fixedet horizon[0, T], in our
filtering-control problem the effective horizon([i, 7*]. If the penalty for detection delay is significant,
we can expect that* — 6| is small, alleviating the problem of post-disorder statctigle degeneracy.

4 Solving the Optimal Stopping Problem
Let us define the Snell envelope corresponding to (6),
T
U & esgtinﬂEo U psH1ds+ prHa| % |,
(= t

The original problem consists in findirdp.

Restricting the stopping decision to be made at discrete timstances € {0,At,2At,..., T =
MAt}, the discrete-time value function, which we continue toaterasU;, satisfies the recursive
equation

Ui = min(ptHz, ptH1At 4+ Eo[Ui 4 at|%]) (28)

with Ut = prHy. Therefore, one may computigna; for mAt < T by iteratively solving (28) backwards
in time. The key step in this approach becomes (approxiyjatemputing the conditional expectation
on the right-hand-side of (28). For later use we note thatserdte time the optimal stopping time
T*(t) satisfies
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T*(t)—1
U =Eo Z psH1At + pre ) H2| % | ;
S=
T (t) =tlg + T"(t + At) 1, S £ {pH2 < ptH1At + Eo[Upat| %} € %, (29)

whereS is the complement of the evest

In our Markov setting and in view of (11Y; is a function ofg, i.e., a functional on the nonlocally
compact spaceZ (R ). Note that sincer and N; — ut are time-homogenouBy-martingales they
only affectU; through their stationary increments. As explained in 9ec8, p is generally infinite-
dimensional, presenting a computational roadblock. Iddee have that the conditional expectation
Eo[Utsat|pt] = E(t; o) is a function of the measure-valupgdfor some functionak : .7 (R, ) — R.
Evaluating this majk analytically appears hopeless. Here we propose to overtumehallenge by
employing a Monte Carlo approach to (28) that additionatiybines well with the SMC filtering
method for approximating with p("

4.1 Integrated Algorithm

Our method is based on the Longstaff-Schwartz [23] algerifor classical optimal stopping prob-
lems. Its key idea is to focus on the decision rule, in othelrds/ao approximate (29), rather tHag
directly. This is achieved by replacing , o; = Eo[zs_ttjftt PsH1dS+ PreqatyH2| %+ at] With an
empirical pathwise continuation value,ia; and to compute the condltlonal expectatEujutMﬂ@]
throughcross-sectional regressiasf a Monte Carlo collection¥, ,,. This cross-sectional regression

approximates via

r

Eolla#] =~ § a'(OBi(p), (30)

where (Bi(p))!_, are the basis functions arul (t) the corresponding regression coefficients. Thus,
we replace the conditional expectation operdtglr|%] (characterized as tHe>-minimizer) with an
L2-projection onto thespar(Bi(p) : i = 1,...,r). Comparing the regression predictigna’ (t)B;(pr)
and the immediate payoff H, we then construct the approximate stopping mfer (29).

The computational algorithm begins by generating a largeado database, simulatify,Y) un-
der the reference measuPg and computing the approximate filtet™ along each realized path,
k=1,...,K, using the particle filter of Section 3.2. We then approxam&{ o) ~ B; (pt(”)’k) and
using backward recursion implement (29) by regressing thpirécal (Utk+m) against the simulated

{Bi(p™ ")} 1. Namely,

§9 = {A"Hz < A" Hr-At+ 31 a W BI (A (32)
Tt :tlstK )+ T (t+At)1(3(K))c7 (32)

U= 5 ol Ky At plp (33)
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wherea ) (t) are the empirical regression coefficients from the simoiatif sizeK. Note that the
whole algorithm operates undBg which allows for easy simulation dN,Y) and requires only the
unnormalized filtep™.

Iterating witht = (M — 1) At down tot = 0 we eventually obtain aim-sample estimate

K
Z UI(() ~ Up.
k=1

Since it is Monte Carlo basedy is itself a random variable and is typically slightly biasé@
avoid this, we may straightforwardly compute an out-of-plTestimatorn. Indeed, it suffices to
simulate a new independent set @, Y, o)X, and moving forward fott = At,24t, ..., evalu-
ate pfHy, pfH, and the continuation valugt = 57_; a K (t)B;(p) using the previously computed
regression coefficients ) (t). Then comparingfand p"**H, one can find the first time* and

setu§ = zialp;‘Hl - At + p%Ha to be the corresponding scenario payoff. Finally, averagebtain
(o = & ¥, G, which by construction is a lower bound fd.

We summarize the full procedure in pseudo-code in Algorithiin the Appendix. Let us stress
the modularity of the code that only needs an implementatioa filtering method (with particle
filters requiring only the ability to sampbd§) and a method for finding conditional expectations (with
regression Monte Carlo relying on standard least-squaggession). For the basis functidgs-), the
natural choices include conditional momeBt§p) = px’ for integers/, as well as nonlinear functions

of quantities appearing in (10), suchB$p) = (01 py)" or (px)".

Up =

x| -

Remark 4 Subject to smoothness conditioq,has anL? density with respect to the Lebesgue mea-
sure. In that case, it can be completely characterized g¢ifird@s action against a basﬂég(-));’:l for
L2(R;), namely as an infinite sequenta);_;, ay = pt(By). Accordingly, the functionaE can be
viewed as a function on the coordinates) and the regression again®;) above is then a double
projection, first truncating to a finite number(c:zfg)g'1 and then projecting against a truncated basis of

L2(R™).

4.2 Error analysis

Several steps of the overall algorithm above required apm@tion. In detail, these were: (i) filtering
error betweem andp(™; (i) projection error of approximating conditional exgation with a projec-
tion onto thespan(B;,i = 1,...,r); (iii) Monte Carlo error due to finite simulation database) Snell
envelope error from making the wrong stopping decision ) (3

Observe that for the final value function, it is only the firsiddast errors that are intrinsically
important: even if the projection and MC errors have beenanad long as the stopping strategy is
correct they are not counted. This key observation is thevatan behind the algorithm’s focus on
(29) rather than (28).

The filtering error has been quantified in Lemma 2. Unfortalyano sharp results are known for
the Snell envelope error, and existing methods revert t@dsrsive decomposition into the projection
and Monte Carlo errors. This produces very pessimisticrét@al error bounds and in particular
implies that the number of simulation patsshould be exponential in number of basis functions
r. Additionally, we note that the MC and filtering errors corapd each other during the regression
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step, due to the resulting error-in-variable that causiemaated estimates of. Consequently, it is
important to minimize the filtering error as much as feasible

For a given functiory : .# (R,) — R, denote by(prog)(p) = ¥; @'Bi(p) the true projection op-
erator ontespar(B;,i = 1,...,r) and by(pog)(p) £ 5; a'Bi(p) the empirical regression based on a
Monte Carlo sample of; of sizeK (thus formally, pfog is a random operator that is a function of
the simulation set). Let % (g) = Eo||prog(p™) — prog(p{™)|4%/2 be theL? norm of this Monte
Carlo error, where the expectation is over the possiblelsitionm setsw’, the patrticle filter realizations
pt(”) and the paths ofN,Y). The following Lemma is a direct consequence of Theorem 24i. [

Lemma 4.Denote byJ; = Ot(p[) the approximate value function at date t computed by therdhgo
of Section 4.1. Then there exist constanisXs that depend only on model parameters, such that

G
NG

Typically, the Monte Carlo error is of orde#, = ¢/(K~/2), so the algorithm accuracy is order1/2)
in bothn andK. The Lemma also suggests that the number of gatkisould be exponential iAt.

5 1/2 ~ ~ ~
Eo [|Uo—Uo|?] " <4M.Cy- max {|| proUs —Usll2 +2s(Us) } + (34)

Remark 5The classical disorder formulation of Shiryaev [30] is oniidimite horizon, so that there

is no specific deadline by which an announcement must be rkade. discretd-(-) and memoryless

0, the results of [3, 25] imply that the finite horizon solutioonverges to the infinite horizon solution
exponentially fast. In general, the convergence shoulédepn the right tail of the distribution &f;

in most practical applications this would imply (supererential convergence.

From a global perspective, our algorithm employs appronaoth at the filtering and optimiza-
tion steps. The errors in computing Snell envelopes via ti€Rnethod have been studied in [16, 18].
At the same time, the functional stability of Snell envelopégth respect to the underlying process
(here we replace with p(") was considered in [27, 8]. Finally, the robustness of axiprating (28)
was addressed recently in [13]. However, combining thesaltetogether is difficult since no usable
quantitative results are known for thate of convergence of the Snell envelope.

5 Numerical Examples
5.1 Analysisof Particle Filter

We begin our numerical experiment with a study of the pagtiitler performance. To check the accu-
racy of our method we compare it against a case where an etatios is possible, viz. a discrekg(-)
and memoryless disorder tinte In preparation for examples below, we assume éhat Exp(0.5),

u =10 andy is a mixture of two discretized “uniform” distributions ¢8 8] and[15, 25| respectively.
More precisely,

25

F() =) 0.02&29+02(") + d148+04i("))- (35)
=]

We consider just Poisson observations wkhXs) = Xs,h(Xs) = 1; in that case the exact solution is
given by the Wonham filter (15) and can be readily computel miatrix exponentials, see [25]. Thus,
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the posterior distribution is given by the 51-dimensionatter fi(t) with 7o (t) = P(% = xj|%) and
Xj’'s given in the Dirac masses of (35).

We implement a particle filter with 500 particles and resangplrequency based on CoV criterion.
In Figure 1 we show one sample path sequentially trackingctimelitional expectation of the post-
disorder ratex|%; given observations. As expectegy decreases between arrivals and jumps up at
arrival times. We observe that with 500 particles, the pkftiilter does an excellent job of matching
the truex-posterior. Also, despite the relatively high arrival sgtéhe observation process is still not
very informative, so that the inference problem is rath#fiadilt. Even aftefT = 5 time units, the 95%
credibility interval has width of over 4; nevertheless tioeergence to the true value pfis evident.

25— T T T T
_T[t/\

RIPTER h ! O
1

Ut - —-95% quantiles||
[ 777True/\t

20} !

EA© <1

10

Fig. 1 Performance of the patrticle filter for the Poisson disordebfem withF given in (35). We
show one sample path of the conditional expectatiog|é% using the exact and basic particle filter
method withn = 500. We also indicate the true arrival rateand the 95% quantile interval of the
particle filter posterior.

Table 1 provides further details on the performance of theigba filter. The first two columns
confirm the&(1/,/n) theoretical convergence rate pf". The last two columns show that in this
example because of the discrétg) re-sampling increases the average error.

n Std. Error Resampling Freq Std. Error
500 Q103 Every step1k = 0.05k 0.123
1000 0074 Based on N1 = Oy 0.103
2000 0053 None (SIS) oLo2

Table 1 Accuracy of the particle filter method. Standard error cgpomds tdEg [Hﬁ‘r — fﬁ(-n)Hz},
where || - ||2 is the Euclidean vector norm applied to the 51-dimensiomaitoar of true posterior

probability 7 computed according to (15) and the approximate normaliz;'atedzbvﬁ(rn> returned by
a particle filter withn particles. Standard error based on 4000 simulated paths.
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5.2 Example 1

To be able to compare our Bayes risk computation to existiathods, we again consider sole Poisson

observations together with a discrete post-disorderidigton F (-) and exponentially distributed. In

that case, the filterris finite-dimensional and the Bayes risk problem can be aared using the tools

of [3, 25]. Thus, the drift idr= 1 and for simplicity, we take a BernouHi, makingrmtwo-dimensional.
Our objective function is

T

whereu = 3 andyx € {2,4}. The rate of disorder i ~ Exp(0.5), p = (0.99,0.0050.005) and the
horizon isT = 5. As a benchmark we solve this problem using our regressiontélCarlo (RMC)
method withn = 4000 particles an& = K’ = 50,000 paths, withAt = 0.1 and no resampling. With
a BernoulliF () there is no risk of particle degeneracy and we find that reiagipoticeably lowers
accuracy. We use the= 5 basis functions{1, o1 o1, Pt Lix—3}, Pt Lix=a}, MN(Pt Lix—2}, Pt Lix—a}) }
which seems a minimal requirement looking at the payoff fioms. After many numerical experi-
ments, we find that adding further basis functions has a gietgi effect, while using fewer than five
leads to a much larger estimateyf. See also [4] in this volume for new ideas on how to automage th
process. The standard error of the out-of-sample RMC estidgas about 27-10~4, producing three
significant digits. The running time is about 2.5 hours on38@&Hz desktop, with the vast majority of
time spent on simulating™.

To compare, we also re-solve this problem following the dthm in [25] which relies on a recur-
sion on the number of possible arrival times= sup{k : ox < T} and discretizes the state space of the
Wonham filterit € {(m, ™, 18) : 1§ > 0,Y; 7§ = 1}. This approach is entirely separate from the RMC
algorithm herein, utilizing different filtering and optimstopping techniques and is only applicable
for X a time-homogenous finite-state Markov chain. As shown inelabthe results are within 2%
of each other, which is acceptable. The main error seems thubdo the time-discretization of the
integral f; psH1ds

Table 2 shows that in fact= 1000 particles produce essentially the same answer, wbdeedsing
the number of paths has mainly impact on the MC standard efi@y. Figure 2 shows the distribution
of the optimal stopping time*. We can see that* varies quite a lot across different scenarios, with
some paths stopping as early®@s= 1, and others stopping as lates= 4. Note that all paths stop
beforeT = 5 indicating that the finite horizon constraint is irreletzarhe interpretation of the behavior
of 7* is difficult, since Figure 2 shows its distribution under théerenceéPq (where all the simulations
take place), while true observations will be unéter

5.3 Example 2

Our second example is motivated by a financial applicatioimas joint Poisson and Wiener observa-
tions and more involved cost functions. We consider a marthgewishes to ramp up manufacturing
of a product with demand = {X;}. To do so, she must set the production (supply) leielnitially
demand and supply are in equilibriutig = Xo = p, but at time@ demand is expected to ramp up to
level x. If the supplies are too higth > X;, over-production costs are incurredgif< X;, opportunity
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Empirical distribution of optimal stopping time
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Fig. 2 Distribution of the empirical optimal stopping tinté under the reference measiitg Out of
sample simulation witiK’ = 32,000 andAt = 0.1.

Case |Bayes RiskJ(m) MC Std. Error
LS08 0.532 -
RMC 0.542 27-10%

n =500 0.547 -

K = 5000 0.548 19104
K = 10000 0.543 91-10*
K =2000Q 0.543 77-10°%

Table 2 RMC Algorithm solution for Example 1, compared to the HMM imed of LS08 [25]. We
also compare the sensitivity of our method to the number dighas n and number of pathk.
The default case has= 4000,K = 50,000 andr = 5. Monte Carlo standard error is based on 20
independent runs of the RMC algorithm.

costs of unmet demand result. We assume hatu a.s., so the disorder in terms X¥fis always up-
wards and < 1 leads to under-production. Based on her information satiarmanager must select
a timert to adjust her production levels to match the new demasd as to minimize these costs.
Demand is observed through two observation channels. @h¥roonsists of market demand for a
related productlY; /Y; = a X dt+ odW, where(W,P) is a Wiener process. Letting= 1 log¥; + 3 ot
we havedY = 2X; dt+dW matching the setup in Proposition 1 wiitX;) = 2X;. ChanneN monitors
economic events that are positively correlated Wittand occur at frequenci (%) = (%)2, with
N 1L W.
For the new demand levgl we take a truncated mixture of two normal distributions,

X~ A (505)Vv3 with prob. 06;
X~ (4,025 V3 with prob. 04.

and consider (non-symmetric) costs that depend on thenmrsteror in identifyingy:

T
TE,Y!TIGR+ E |:/0 Cll{Xt;éu} dt+ 1{Xr:IJ} + 0211{Xr>d}(xr — d) + C221{Xr<d}(d — XT) .
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Recall that in this case, the optimal new demand leyes$ thec,,/(C21+ C22) quantile ofXy: P(X; <
d;|#;) =: szszz. As far as we know, there are no nonlinear filtering models$ #usmit sufficient
statistics for posterior quantiles.

The respective costs are takercas=1,cy1 = %,czz = % The original rate of the Poisson procéss
is u = 32, and the horizon i$ = 3. Finally,8 ~ Weibull(0.5,1.5) so that the@-hazard raté (t) = 3/2t
increases as the square-root of time passed.

Table 3 compares the resulting Bayes risk as we vary the wditsem schemes, namely the informa-
tiveness of the diffusion observatian:= £ (see a related comparison for a 2-stéten [12, Figure
9]). Largera makes the diffusion drifh(Xs) = aXs more sensitive to the signal level and therefore
aids disorder detection. Therefore, the value functiois decreasing im. We see that this effect is
quite dramatic and nonlinear, with = 2 reducing Bayes risk by nearly 70% comparedte: 0.

The presence of Wiener observations makes the variance dk#iihood weightss; grow expo-
nentially over time which affects all the unnormalized fite quantities. At the same time, the median
shrinks exponentially fast. For instance with= 1 we have that the median p#l is ~ 108, while
MmaX<k p'{l > 10%. Such a large spread presents numerical round-off conderrapplying cross-
sectional regression to fimad)(t). Accordingly, we apply regression on the normalized cargtion
valuesuX- (p¥1)~! using the normalized basis functioBg 7). One may also apply local least squares

or nonlinear regression to overcome the different scalessacscenarios.

[Case  [Bayes riskug)
a=0 0.78
a=0.25 0.77
a=05 0.76
1 0.62
2 0.26

Table 3 Bayes risk and average optimal stopping time for differemhg-diffusion observation
schemes. All the results are basedkn= K’ = 32,000 paths withAt = 0.04 and patrticle filters
implementing the Liu-West adjustment moves with 1000 particles, and = 0.99.

6 Extensions

The algorithm in Section 4.1 is certainly computationafijensive and it would be desirable to find
further speed/efficiency improvements. However, at thagatthere are few alternatives to handle a
problem like Example 2 above. Most existing methods, sucthase in [25, 12] for finite HMMs
observed via point processes, are designed to handle lowrdiional optimal stopping problems and
would not apply. Certainly replacing the continuous disttion F in Example 2 with a two- or three-
point discrete approximation is a poor choice. A quantimaipproximation op was investigated by
[29]in a simple diffusion setting, but it is arguably as cartgiionally expensive as ours. An interesting
alternative consisting in improving the stochastic mesithoe: for very high-dimensional problems,
was very recently proposed by [13]. Alternatively, one cansider other curve-fitting statistical tools,
such as smoothing splines, local regression or convexssigmg to refine the approximation of the set
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S in (31). In this vein, importance sampling techniques toegate more Monte Carlo samplptg’)’k
in the region of interest, namely close to the boundarie3,aflso merit investigation.

A significant advantage of our simulation-based approaih fiexibility which could be exploited
to handle many extensions of the basic model (1)-(3).

6.1 Compound Poisson Process Observations

In many practical applications, it is useful to considercherr structure of counting process obser-
vations. Namely, we may replace the simple Poisson prades#th a compound Poisson process,
or more generally a marked point process. Hence, we now asthemN consists of a double se-
quence(01,Z1;02,25,...) where 0< 01 < 0z < ... are the arrival times andy € Z are the corre-
sponding marks. Similar to the intensity Nfbeing driven by the signa{, we assume that the mark
distribution fz(dzx) depends orX. As a simple example, consider Gaussian marks with m&an
P(Zx € Aok =t,.%) = fA\/%Texp(—(z— X)2/2)dz Ac B(R).

Let us assume that all the distributiorig(-;x) are absolutely continuous with respect to some
reference measurég(-) (e.g. the standard Gaussian distribution in the exampleeggbdhen we
may repeat the construction of the reference probabilitasnePy by starting with a canoni-
cal Poisson random measuftl,Po) with compensatow (dt;dz) = pdtfl(z)dz i.e. the process
N([0,t] x 2°) — [ioy) J# v(dt x d2) is aPo-martingale.

The likelihood procesk; is then re-defined as

Lt_exp{/ hedYs — /ths} exp{/m/ /‘Sljzfoz >)<s )) (dsxdz)_/ot(/\s—u)ds},

sothatlLg, =Lg, - Af; fz—.ﬁzx—j) The rest of the analysis proceeds as before, with straigyidird ad-

justments to the patrticle f||ter|ng algorithm in (17). Clgaby providing further information, presence
of marks facilitates disorder detection and will reduceBlages risk faced by the controller.

6.2 Jump Markov Signal

In our original setup, the signal proceXsundergoes a single transition, representing a permanent
disorder in the signal. Practically, more complex signataiyics may be modeled. Hence, instead
of letting X consist of a single jump timé@ and levely, we may imagine aequencef disorders,
corresponding to a marked point procé€g xx). In the simplest jump-Markov setting, we assume that
different pairs( 6, xk) are independent and have the same common distrib(@oR). Since only the

last disorder time affects the probability of the next juniyg pair(t — 6, %), with 6! = sup{ 6y : 6 <

t}, remains Markov. The first component 6' undergoes deterministic evolution between disorder
times, while the second componeftis constant between disorders. SMC methods of Section 3.2
can be adapted to filter the evolution of such gair 6', %), see e.g. [7, 32]. Note that the multiple
disorders inX make sure that particles are never static, alleviatinggaregeneracy concerns. With
multiple disorders the measure change (3) remains the sexuept that\s and hs are piecewise
constant.
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The above framework which has signal components undergieterministic evolution between
disorder times can be extended to allow generic piecewesenahinistic, or jump-Markov process for
X. A practical example would be the shot-noise process thatrnces jumps at disorder times and
decays exponentially towards a long-run mean otherwiges X+ Y., <t Ze "t=8) wherery is
the decay rate associated with théh jump of sizeZ, € R. Bayesian decision making in such more
complex models will be explored in a separate forthcomingkwo
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Appendix A

Algorithm 1 Adaptive Disorder Detection using Regression Monte Carlo

Input: K (number of paths)n (number of particles per pathjit (time step for Snell envelopeli(p) (regression
basis functions);r (number of basis functions).
for ke {1,2,...,K} do
Simulate standard Poisson procé, Po) with intensityu, and standard Wiener proce®, Po) on [0, T].
Samplen particles formingoX = pé”)’k from the priorm of Xp.
Use the particle filter algorithm to compyt¥ along the pathiNX, ) fort = 0,At,...,T.
Initialize UX(T) = pXHy, TH(T) =T.
end for
fort=(M—1)At,...,At,0do
Evaluate the basis functior&(ptk), fori=1,...,randk=1,... K.
Regress

K ro 2
a® )2  argmin Kt+at) — S a'Bi(ph)] .
(al,...a")err k;) i; I )

fork=1,...,Kdo
SethtX(t) := pkH; andh?X(t) := pKH,.
Setdk(t) = i At + 5T, aK)i(t)B;i(pk). // predicted continuation value
) if af(t) > hP();
uK(t+At) + h (1) At otherwise.

tif Ak > h2K(t);

Updater®(t) = ¢ o ). ®
T°(t 4 At) otherwise.

end for

end for
return u(mp) ~ & T, u¥(0).

Setuk(t) =




