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Abstract

This paper considers the pricing of operational flexibility. By extending the recently develoed
duality ideas for American option pricing we develop a dual representation for the problem and give
algorithms for calculating upper bounds for the price of such optionality. We have also analysed
the influence of the choice of basis functions to the results computed.
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1 Introduction

A fundamental problem encountered in exotic energy derivatives is the pricing of operational flexibil-
ity. Power merchants and electricity trading firms increasingly have dedicated scheduling teams that
control the operation of generating assets like power plants, storage facilities, etc. The controllers aim
to maximize the total cashflow to the firm, subject to the engineering, regulatory and other market
constraints.

Quantifying the value (hereafter called “price” for simplicity) of such optionality is therefore of
great interest. Carmona and Ludkovski (2005) [2] use the idea of the regression Monte Carlo approach
to compute the price via simulation techniques. But this approach only produces a lower bound for
the value of a tolling agreement, since the price is computed by approximating the optimal scheduling
rule.

Recently, a duality approach based on the work of Davis and Karatzas (1994) [3] was proposed
independently by Haugh and Kogan (2001)[4] and Rogers (2002) [6] to compute an upper bound for
American options. Rogers (2002) generates a good approximation to the optimal martingale process
by constructing a portfolio to hedge the option. But as Rogers states in his paper:“There are few
general rules so far; the selection of the martingales appears to be more art than science”.

Meinshausen and Hambly (2004)[5] developed this idea to price the multiple-exercise case, specif-
ically the swing option with a single exercise opportunity at every exercise time. Aleksandrov and
Hambly (2008) [1] extended [5] to incorporate extra constraints, such as different volume restrictions
each day and a total volume restriction of the contract.

Our work is to develop the duality ideas from [2], [1], [6] and [5] to find an upper bound on the
tolling agreement’s price. To reduce the complexity of this problem, we have simplified the model to
one-dimensional (Xt), which can be explained as the spark spread. We give two numerical examples
and write down all the difficulties we have run into.

The structure of the paper is as follows. We begin by introducing the financial engineering
problem we study and our method to implement the duality approach in section 2. Section 3 gives a
first numerical example where we try three different algorithms to compute the upper bound. Section
4 gives a second numerical example where operator’s action will impact the price of market.

2 Problem Setup

2.1 General Situation

Financial players in the energy markets have increasing interest in owning energy assets, but the
construction and maintenance of these assets is extremely capital intensive. In order to avoid this
difficulty, the idea of a tolling agreement was invented. A tolling agreement temporarily transfers the
scheduling flexibility of the asset in return for a fixed payment.

Let us consider a typical tolling agreement that gives control of a power plant for a period of T
time epochs. We suppose that besides running the plant at full capacity, or turning it off completely,
there also exist a total of Md − 2(Md ∈ N,Md ≥ 2) intermediate operation modes. To each mode
m(0 ≤ m ≤ (Md − 1),m ∈ N), we associate a payoff rate (in dollars or utility) at time t(0 ≤ t ≤ T ):
ψm(t). The payoff may be related to many factors such as the prices of fuel, gas and electricity, to
establish a more abstract model, we denote by (Xt) all these factors supposed here to be a Markov
process. We denote the corresponding production cashflow rate as ψm(Xt).
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Changing from one mode i to another mode j is costly, requiring extra fuel and various costs. We
denote by Ci,j(t,Xt) the switching costs from mode i to mode j with potential dependence on time t
and current state Xt.

Assumption 2.1. The switching costs are strictly positive with Ci,j > ǫC > 0, for all i 6= j and some
ǫC > 0. Also, Ci,i = 0, and Ci,j satisfies the triangle inequality

Ci,j ≤ Ci,k + Ck,j, for any {i, j, k} ∈ {0, 1, ...,Md}
3.

Let (Ω,F ,F = (FX
t ),P) be a stochastic basis. For our model, we take a d-dimensional (Xt) =

(X1
t , ...,X

d
t ) satisfying:

dXt = µ(xt)dt+ σ(xt) · dWt, (1)

where σ(Xt) is a d × e dimensional matrix, {Wt} is a standard e-dimensional Wiener process on
(Ω,F ,F,P). The filtration F satisfies the usual conditions, with F0 being trivial. µ, σ can be time
dependent; we omit t for convenience.

We model the ability to schedule the start-up and shut-down order as a control process u = (ut).
The control u is dynamically chosen and adapted to the information filtration FX

t , σ (Xs : 0 ≤ s ≤ t).
u can be represented by:

u = ((ξ1, τ1) , (ξ2, τ2) , ...) , with ξl ∈ ZMd
, {0, ...,Md − 1}, and 0 ≤ τl−1 < τl < T,

and ut can be written as: ut =
∑

τl<T ξl1[τl,τl+1)(t). The total gain from t to T for a control u and
scenario ω ∈ Ω is:

H([t, T ], x;u)(ω) ,

∫ T

t

ψus(ω)(s,Xs(ω))ds −
∑

t≤τl<T

Cu
τ
−

l

(ω),uτ
l
(ω), Xt = x.

Let U(t) be the set of all allowed u on the interval [t, T ]. The operational flexibility problem may
now be stated as calculating the value function:

J(t, x, i) = sup
u∈U(t)

E[H([t, T ], x;u)|ut = i], (2)

where E denotes expectation with respect to a risk-neutral pricing measure P.

To solve the problem 2, we introduce

Uk(t) , {u ∈ U(t) : τk+1 = T},

the set of all admissible strategies on [t, T ] with at most k switches, and

Jk(t, x, i) = sup
u∈Uk(t)

J(t, x, i;u).

For convenience, we note Jk
i for Jk(t = 0,X0, i).

With the notation

S
p
T , {Z : FX

t − adapted,E[ sup
t∈[0,T ]

|Zt|
p] <∞}, p ≥ 1,

we make the following standing assumption:
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Assumption 2.2. For each m = 0, 1, ...,M − 1, the reward function ψm : [0, T ] × R
d → R is locally

Lipschitz in (t, x) and ψm(·,X) ∈ S 2
T uniformly in X0 = x restricted to bounded set.

Theorem 2.3. We can iteratively define Jk(t, x, i) for t ∈ [0, T ], i ∈ ZMd
, by

J0(t, x, i) , E[

∫ T

t

ψi(s,X
t,x
s )ds], (3)

Jk(t, x, i) , sup
τ∈St

E[

∫ τ

t

ψi(s,X
t,x
s )ds + RJk−1(τ,Xt,x

τ , i)], k ≥ 1, (4)

where St , {τ ≤ T : F − stopping time s.t. t ≤ τ a.s.} is the set of all stopping times after t and
the function operator R is defined by

Rω(t, x, i) , max
j 6=i

{−Ci,j + ω(t, x, j)}, i, j ∈ ZMd
.

Proof. See the paper of Carmona and Ludkovski [2].

Theorem 2.4.

lim
k→∞

Jk = J pointwise.

Proof. See the paper of Carmona and Ludkovski [2].

2.2 Simplified Situation

We now let Md = 2 to simplify our problem.

Definition 2.5. Inspired from ( 4), we can define the payoff at time t (0 ≤ t ≤ T )

hk
t (X t, i) =

{ ∫ t

0 ψi (Xs) ds− Ci,j + Jk−1 (t,Xt, j) , i, j ∈ {0, 1} and i 6= j, t ∈ [0, T ),∫ T

0 ψi (Xs) ds i ∈ {0, 1} t = T,
(5)

where Xt , {Xs, 0 ≤ s ≤ t}.

Thus, we can regard the tolling agreement as an American option.

Definition 2.6. The value of this “option” at time t is denoted by

V k
t

(
Xt, i

)
= sup

τ≥t

Et

(
hk

τ (Xτ , i)
)
, (6)

where τ is a stopping time satisfying 0 ≤ τ ≤ T with respect to F(Xt).

In order to do numerical simulation, we first transfer the continuous time to discrete time. Let
S∆ = {m∆t,m = 0, 1, ...,M} be a discrete time grid with ∆t = T/M . Mode switches are only allowed
at grid points, i.e. τl ∈ S∆.

Theorem 2.7. (Dual Representation) The price of the tolling agreement with at most k switches
is equal to

V k
0 = inf

M∈H1
0

E[ sup
0≤t≤T

(hk
t −Mt)],

where H1
0 is the set of integrable martingales which are null at 0.
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Moreover, if switches are only allowed at grid points, the the minimum is attained for the mar-
tingale M∗ with M∗

t=0 = 0 and

M∗
m∆t −M∗

(m−1)∆t = V k
m∆t − E(m−1)∆t[V

k
m∆t],

where m ∈ {1, 2, ...,M}.

Proof. See the papers of Rogers [6] and Aleksandrov and Hambly [1].

In the following two numercial examples, we will introduce methods to compute upper bound for
the price of tolling agreement, using Theorem 2.7.

3 First Numerical Example

Here we use the notion and the algorithms adopted by Carmona and Ludkovski [2]. According to (1),
we use a simple one dimensional (Xt) and

dXt = 2 (10 −Xt) dt+ 2dWt, (7)

X0 = 10,

with time horizon T = 2. We have two regimes with continuous reward rates of

ψ0 (Xt) = 0, (8)

ψ1 (Xt) = 10 (Xt − 10) ,

and the switching costs between them are: C1,0 = C0,1 = 0.3.

We note:

• M : number of discrete time epochs. Here we take M = 400.

• ∆t , T
M

.

• Np: the number of paths to calculate the lower bound.

• k: total number of switching opportunities.

• xn
m∆t,m = 0, 1, ...,M, n = 1, 2, ..., Np: Np paths of driving process with fixed initial condition
xn

0 = X0.

• Bj(Xt): j-th basis function for Regression Monte Carlo approach.

• αt,k,i
j : coefficient of basis function Bj(Xt) at time t with k switching opportunities left and with

initial regime mode i ∈ {0, 1}.

• NN : total number of separate runs.

• σ: the standard deviation of all results after running the algorithm NN times.

3.1 Lower Bound

We use the algorithm introduced in [2] to calculate the lower bound. The standard deviation is
obtained by separately running the program NN times.



7

3.1.1 Analysis of Basis Functions

First, our aim is to choose a suitable set of basis functions with which the lower bound computed is
reasonably approximating the true value. Basis functions we will take are

B1 = 1,

B2 = Xt,

B3 = log (Xt) ,

B4 = X2
t ,

B5 = Xt log (Xt) ,

B6 = X2
t log (Xt) ,

B7 = max(Xt − 10, 0),

B8 = exp(Xt − 10),

B9 = X3
t .

After the computation of the lower bound, we also draw the curves of coefficients against time
and analyze their smoothness, however, the smoothness of these coefficients is hard to define. For
example, in the left panel of Figure 2, the dashed line seems smooth when time is larger than 100∆t.
But when we “zoom in” it turns out to be rough. Another reason is that the orders of values of these
basis functions are not the same; B2 = Xt ∼ 10, B4 = X2

t ∼ 100 and B9 = X3
t ∼ 1000 for instance.

So the smoothness we define here is more subjective than objective. In this paper, our main method
is to compare the performance of the same basis function between different sets of basis functions.

With Np = 16000, NN = 40, total switching opportunities k = 10, we write results in the following
table using notions S (stable), U (unstable) and SU (severely unstable) to mark the smoothness of
coefficients. Note that the true value obtained by using a pde solver is 5.93 [2] . The value in the

parentheses is the standard deviation. We also define by αt,k,i
j the coefficient of Bj and the initial

regime is mode i. In our paper, we use αt,k
j instead of αt,k,1

j for convenience.
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Basis functions Smoothness Lower bound(σ) Figure

B1, B2 S 5.538(0.053)
B1, B2, B3 S 5.566 (0.055)
B1, B2, B4 S 5.538 (0.053)
B1, B2, B5 S 5.539 (0.053)
B1, B2, B7 S 5.554 (0.057)
B1, B2, B8 S 5.584 (0.052)
B5, B7, B8 S 5.317 (0.046)

B1, B2, B3, B4 U 5.725 (0.055) Fig 1
B1, B2, B3, B5 U − 5.720(0.055)
B1, B2, B5, B7 S − 5.553(0.053)
B1, B2, B5, B8 S 5.687(0.054)
B1, B2, B4, B8 S 5.687(0.057)
B1, B5, B7, B8 S − 5.634(0.057)

B1, B2, B5, B7, B8 U + 5.694(0.052)
B1, B2, B4, B5, B8 U 5.726(0.053)
B1, B2, B4, B7, B9 S − 5.772(0.058) Fig 2
B1, B2, B4, B8, B9 S −− 5.777(0.057)

B1, B2, B3, B4, B5, B6 SU 5.860(0.057) Fig 3
B1, B2, B3, B4, B5, B8 SU 5.865(0.051)
B1, B2, B4, B5, B7, B8 SU 5.778(0.055)
B1, B2, B4, B5, B8, B9 SU 5.878(0.057)

Table 1: The smoothness of coefficients against time and the lower bound calculated with different
sets of basis functions. Np = 16000, NN = 40, k = 10. Notions: S (stable), U (unstable) and SU
(severely unstable).

Figure 1 shows that αt,k
1 and αt,k

3 are not stable when we use {B1, B2, B3, B4} as basis functions.
In addition, at the beginning (0 ≤ m ≤ 50), coefficients vary sharply. This is a common phenomenon
for almost all sets of basis functions. The reason is that when t is small (0 < t < 0.25), Xt is close to
X0 = 10 for nearly all paths, causing higher variability of regression. When we use {B1, B2, B4, B7, B9}

as the basis functions, we can see from Figure 2 that except the αt,k
1 , other coefficients seems relatively

stable against time. Note that αt,k
7 stays most of the time in [1, 2]; we will explain it in the following

part of this subsection. Overall, {B1, B2, B4, B5, B6} is the set of basis functions having the best

results for the value function, but αt,k
1 , αt,k

2 , αt,k
3 and αt,k

5 are very large (being on the order of 104)
and change fast, and as the Figure 3 shows, the coefficients are severely unstable.
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Figure 1: The graph of regression coefficients against time, using the set of basis functions
{B1, B2, B3, B4} with Np = 16000, k = 10. Left is the graph of αt,k

1 (coefficient of B1); right αt,k
3 .
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Figure 2: The graph of coefficients, using {B1, B2, B4, B7, B9} as the basis functions, with Np =

16000, k = 10. Left is the graph of αt,k
1 (solid line) and αt,k

2 (dashed line); Right αt,k
4 (solid line), αt,k

7

(dashed line) and αt,k
9 (dash-dot line).
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Figure 3: The graph of coefficients, αt,k
1 (left), αt,k

2 (right) with Np = 16000, k = 10, basis functions
{B1, B2, B3, B4, B5, B6}.

We also analyze the “remaining value” of this tolling agreement at time t, J10(t,Xt, 1) , as a
function of Xt (from 5 to 15) at time t (0 ≤ t ≤ T ), which is shown in Figure 4. It was computed
by simulating the lower bound of J10(t,Xt, 1) at time t, with different initial Xt ∈ {5, 5.1, 5.2, ..., 15}.
The computation is similar to that of the lower bound of J10(0,X0, 1) with the horizon of T ∗ = T − t.
We can see that J10(t,Xt, 1) is increasing and convex. The curves are more or less similar to the curve

max(Xt − 10, 0) with the slope ks ∈ [3, 5] when Xt > 10. This partly explains the curve of αt,k
7 in

Figure 2.
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Figure 4: The graph of J10(t,Xt, 1) at time t as function of Xt with t = 0, t = 0.5 and t = 1.5 (T=2),
using {B1, B2, B3, B4, B5, B6} as basis functions, with Np = 16000, k = 10.

3.1.2 Switching Boundary

The large number of basis functions might also cause the complicated behavior of Ĵ , and finally cause
multi-solutions in calculation of the switching boundary.

We calculate switching boundaries with k switching opportunities at time t by:

{
10(Xt − 10) · T

M
+

∑
i α

t,k−1,1
i Bi(Xt) − C0,1 =

∑
i α

t,k,0
i Bi(Xt), boundary for ut−1 = 0 to ut = 1;

10(Xt − 10) · T
M

+
∑

i α
t,k,1
i Bi(Xt) =

∑
i α

t,k−1,0
i Bi(Xt) − C1,0, boundary for ut−1 = 1 to ut = 0.

(9)
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Figure 5 illustrates the results. The left panel is the boundary calculated normally, i.e. we find
the solution of (9) nearest to Xt = 10. But other solutions often exist as well, as shown in the right
panel of Figure 5. The existence of vertical lines means that at some time points, we can only find
1 or 2 solutions (not 3 solutions). From common sense, we know that the switching boundary from
mode 1 to mode 0 is definitely below 10 and there will be only one such boundary.
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Figure 5: The graph of the switching boundary at different times, using {B1, B2, B3, B4, B5, B6} with
Np = 16000, k = 10. Left panel: the boundary solution nearest to 10, upper curve (in blue) is the
boundary for mode 0 to mode 1, lower curve (in red) is the boundary for mode 1 to mode 0. Right
panel: we can find three solutions of equation of (9) at some time points and vertical lines link the
same type of boundary (there are two types of boundary: mode 0 to 1 (in blue) and mode 1 to 0 (in
red)).

As we can see from Figure 6, the problem resides in the regression. In the right panel of Figure 6,
J10(t = 0.5,Xt=0.5, 0) and J10(t = 0.5,Xt=0.5, 1) are calculated by computing the lower bound at time
t = 0.5 with different Xt for t = 0.5. The basis functions are {B1, B2, B3, B4, B5, B6}. As we can see
from Table 3, the lower bound and the true value are very close, so we expect that these two curves
are very close to the real ones. In the left panel, L̂10(t = 0.5,Xt=0.5, 0) and L̂10(t = 0.5,Xt=0.5, 1) are
calculated using coefficients and basis functions at time t, i.e.

L̂10(t = 0.5,Xt=0.5, 1) =
∑

i

αt,k,1
i Bi(Xt) + 10(Xt − 10)T/M, (10)

L̂10(t = 0.5,Xt=0.5, 0) =
∑

i

αt,k,0
i Bi(Xt).

Comparing (9) and (10), together with the left panel of Figure 6, we see that the deviation in the
regression leads to the multiple solutions for the switching boundary.

Ĵ10(t = 0.5,Xt=0.5, 0) and Ĵ10(t = 0.5,Xt=0.5, 1) are calculated by

Ĵ10(t = 0.5,Xt=0.5, 0) = max{L̂10(t = 0.5,Xt=0.5, 1) − C0,1, L̂
10(t = 0.5,Xt=0.5, 0)}, (11)

Ĵ10(t = 0.5,Xt=0.5, 1) = max{L̂10(t = 0.5,Xt=0.5, 1), L̂
10(t = 0.5,Xt=0.5, 0) −C0,1}.

As we can see from the middle panel and the right panel of Figure 6, we can conclude that
Ĵ10(t = 0.5,Xt=0.5, 0) and Ĵ10(t = 0.5,Xt=0.5, 1) are actually above the true value when Xt is far from
10.
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Figure 6: Left panel: the graph of L̂10(t = 0.5,Xt=0.5, 0) (dashed line), L̂10(t = 0.5,Xt=0.5, 1) (solid
line) with basis functions {B1, B2, B4, B7, B9} and Np = 16000; middle panel: Ĵ10(t = 0.5,Xt=0.5, 0)
(dashed line), Ĵ10(t = 0.5,Xt=0.5, 1) (solid line) with basis functions {B1, B2, B4, B7, B9} and Np =
16000; right panel: J10(t = 0.5,Xt=0.5, 0) (dashed line), J10(t = 0.5,Xt=0.5, 1) (solid line). J10(t =
0.5,Xt=0.5, 0) and J10(t = 0.5,Xt=0.5, 1) are calculated by computing the lower bound at time t = 0.5
with different Xt=0.5 with basis functions {B1, B2, B3, B4, B5, B6} and Np = 16000.

.

We have tried different sets of basis functions to test if they have more than one switching
boundary. Table 2 tells us that most sets of basis functions have more than one boundary. In
addition, if the number of basis functions is more than 5, it was hard to avoid having multi-solutions.

Basis function Double solution? (Percentage)

B1, B2, B5 No (0%)
B1, B2, B8 Yes (∼ 10%)
B1, B2, B4, B8 Yes (∼ 13%)
B1, B2, B5, B8 Yes
B1, B2, B4, B8, B9 Yes
B1, B2, B3, B4, B5, B6 Yes
B1, B2, B4, B5, B8, B9 Yes

Table 2: The occurrence of double boundary with different sets of basis functions with Np = 16000, k =
10. The percentage in the column “Double solution” indicates the proportion of time when there are
more than one boundary solution. If the percentage is not indicated, it means that the proportion is
larger than 50%.

3.1.3 Influence of Np

Here we choose two sets of basis functions to simulate the lower bound. The results with different Np

are showed in Table 3. Comparing this table and Table 1, we can conclude that Np, the number of
paths to simulate, only has influence on the standard deviation when Np is larger than 4000, while
the choice of basis function have a bigger influence on the value of the lower bound computed.

low bound(σ) Np = 4000 Np = 8000 Np = 16000 Np = 32000

B1, B2, B4, B7, B9 5.775(0.116) 5.743(0.073) 5.744(0.065) 5.754(0.035)
B1, B2, B3, B4, B5, B6 5.884(0.104) 5.898(0.063) 5.860(0.057) 5.873(0.037)

Table 3: The lower bound computed with different Np and different sets of basis functions. k =
10, NN = 40.
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As seen from our extensive discussion, it is not possible to find a perfect set of basis functions.
From now on, we will limit our choice of basis functions to two sets: {B1, B2, B3, B4, B5, B6} and
{B1, B2, B4, B7, B9} — first one with stable coefficients, and second one with better simulated lower
bounds. To circumvent the problem of multiple boundaries, in the lower bound algorithm, we will
forbid the transfer from mode 1 to mode 0 if Xt > 10, and from mode 0 to mode 1 if Xt < 10.

3.2 Quasi-upper Bound

Consider the payoff:

ĥk
t (X t, i) :=

∫ t

0
ψi (Xs) ds− Ci,j + Ĵk−1 (t,Xt, j) . (12)

We regard this tolling agreement as an American option. The value of this “option” at time t is
denoted by V̂ k

t (Xt, t, i) (see (6)).

Remark 3.1. This algorithm has a flaw: ĥk(X t, i) is not an strict upper estimate. That is why we
call this subsection “quasi-upper bound”, since the simulated value cannot be guaranteed to be an upper
bound on the value function.

3.2.1 First Algorithm

In this algorithm, we see ĥk
t (X t, i) as the payoff of an American option and use the algorithm introduced

in [1]. Notice that in the paper of Aleksandrov [1], the payoff h(Xt) only depends on Xt while in our
example it depends on Xt = (Xs, s ∈ [0, t]). Since the regression of h(X t) over basis functions of Xt

creates much deviation from the true value, we introduce a basis function depending on (Xs, s ∈ [0, t])
to avoid this problem. According to the expression of ĥk(X t, i) in (12), we add the following basis
function

Ba

(
Xt

)
=

∫ t

0
ψ1(Xs)ds.

First, we still use {B1, B2, ..., B6} to calculate ĥk
t (Xt, i), then we use {B1, B2, ..., B6, Ba} to cal-

culate (13), (14) and the upper bound:

• We calculate the coefficients of marginal continuation value, using the regression and seven basis
functions. With the algorithm of Aleksandrov [1] we have:

Êt

(
V̂ k

t+1(X t+1, t+ 1, i)
)

=
∑

p

βt,k,i
p Bp(Xt), (13)

where i is the regime at time t, p ∈ {1, 2, 3, 4, 5, 6, a} and k the the number of switching oppor-

tunities remain. Note that here βt,k,i
p is not the same as αt,k,i

p , since V k
t (Xt, t, i) 6= Jk(Xt, t, i).

• We calculate the martingale M using again the algorithm of Aleksandrov [1] with

Mk
m∆t =

m∑

p=1

(
V̂ k

p∆t − Ê(p−1)∆t

(
V̂ k

p∆t

))
, (14)

where m ∈ {1, 2, ...,M}.
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• We use this (Mk
t ) instead of the optimal dual martingale to obtain an upper bound

↑V̂ k
t (Xt, t, i) = E[sup

u∈T

(
ĥk

u −Mk
u

)
],

where T = {m∆t,m ∈ {0, 1, ...,M}}.

We note:

• n1: the number of paths to calculate (13), using the algorithm of Alekesandrov [1].

• N : the number of paths for the martingale (Mk
t ) approximation (14).

• NK : the number of inner paths for the martingale (Mk
t ) approximation (14).

With Np = 32000, n1 = 10000, N = 100, NK = 50 and k = 10, we have an upper bound 6.473
and the standard deviation over 50 separate runs is 0.114. These results are not good, being 10%
higher than the lower bound. The cause might be that we have regressed two times and it was over
regressed.

3.2.2 Second Algorithm

Notice that we can skip (13) and directly work with equation (14). Since both V̂ k
t and Et−1[V̂

k
t ]

contain the term
∫ t−1
0 ψi (Xs) ds, we can re-use the results obtained in the computation of the lower

bound:

Mk
m∆t =

m∑

p=1

(
V̂ k

p∆t − Ê(p−1)∆t

(
V̂ k

p∆t

))
(15)

=
m∑

p=1

(
Ĵk(p∆t,Xp∆t, i) − Ê(p−1)∆t(Ĵ

k(p∆t,Xp∆t, i))
)
,

where m ∈ {1, 2, ...,M}.

The results for the quasi-upper bound with initial mode 1 are shown in Table 4.

Basis functions Np k 1 2 9 10

A1

8000
Ĵk

1 3.739(0.070) 5.073(0.073) 5.868(0.066) 5.868(0.066)
V k

1 4.163(0.062) 5.364(0.053) 6.155(0.058) 6.155(0.058)

16000
Ĵk

1 3.742(0.057) 5.087(0.059) 5.869(0.055) 5.869(0.055)
V k

1 4.158(0.060) 5.336(0.050) 6.104(0.049) 6.104(0.049)

32000
Ĵk

1 3.744(0.036) 5.079(0.035) 5.863(0.030) 5.863(0.030)
V k

1 4.150(0.056) 5.301(0.032) 6.063(0.028) 6.063(0.028)

A2 32000
Ĵk

1 3.717(0.044) 5.010(0.043) 5.747(0.038) 5.747(0.038)
V k

1 4.159(0.049) 5.318(0.039) 6.041(0.032) 6.041(0.032)

A1 32000
Ĵk

0 3.736(0.036) 5.079(0.030) 5.862(0.029) 5.862(0.029)
V k

0 4.190(0.073) 5.3114(0.041) 5.996(0.034) 5.996(0.034)

Table 4: Simulation of the upper bound with basis functions A1 , {B1, B2, B3, B4, B5, B6} and
A2 , {B1, B2, B4, B7, B9} with NN = 40, NK = 100. Here V k

1 (V k
0 ) is the upper bound with k

switching opportunities and initial mode 1 (resp., 0); Ĵk
1 (Ĵk

0 ) is the lower bound with k switching
opportunities and initial mode 1 (0).
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The set of basis functions {B1, B2, B3, B4, B5, B6} has better results than {B1, B2, B4, B7, B9}
considering the smaller difference between its lower bound and upper bound. Increasing NN will also
decrease the difference between the upper and lower bounds.

The results are not so good, so we trace the graph of {Xt|t = arg
(
supu∈T

(
ĥk

u −Mu

))
} to

investigate the problem. Since N = 1000, we have 1000 points. These points indicate the time t and
the value Xt when we make the first transfer of regime. Therefore, they should be near the switching
boundary from mode 1 to mode 0. As we can see from the left panel in Figure 7, first switch is made
mainly before t = 100∆t and most points are less than 10, however, some points are anomalous, being
much larger than 10. This arises due to the multi-solutions of the switching boundary as we can see
that the anomalous points are near the second switching boundary from mode 1 to mode 0. There
are also some points at the end of period, suggesting that we have not made any switches. These
abnormal points and those that are far from the true switching boundary are the principal cause of
the bad estimation of the quasi-upper bound.
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Figure 7: Left panel: points are {Xt|t = arg (supu∈T (hu −Mu))} with Np = 16000, N = 1000, NK =
100, k = 10, basis functions {B1, B2, B3, B4, B5, B6} and initial regime 1. There is a total of 1000
points. The lowest curve is the switching boundary from mode 1 to mode 0, the middle is the
switching boundary from mode 0 to mode 1, and the uppermost curve is the second solution of the
switching boundary from mode 1 to mode 0. Right panel: points are {Xt|t = arg (supu∈T (hu −Mu))}
with Np = 16000, N = 1000, NK = 100, k = 10, basis functions {B1, B2, B3, B4, B5, B6} and initial
regime 0. Again there is a total of 1000 points. The middle curve is the switching boundary from
mode 1 to mode 0, the upper curve is the switching boundary from mode 0 to mode 1, and the lowest
curve is the second solution of the switching boundary from mode 0 to mode 1.

When we do the simulation of upper bound with initial regime mode 0, we find the graph of

{Xt|t = arg
(
supu∈T

(
ĥk

u −Mu

))
} is better (points are closer to the switching boundary), as the left

panel of Figure 7 shows. The numerical results are shown in Table 5. The difference between the
upper and lower bound is also much less than in Table 4.
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Np swtch oppts 1 2 9 10

32000
Ĵ10

0 3.736(0.036) 5.079(0.030) 5.862(0.029) 5.862(0.029)
upper bound 4.190(0.073) 5.3114(0.041) 5.996(0.034) 5.996(0.034)

Table 5: Simulation of upper bound with Np = 8000,M = 400, k = 10, N = 1000, Nk = 100 and basis
functions {B1, B2, B3, B4, B5, B6} . Initial regime is mode 0.

The difference between the right and the left panel of Figure 7 is not so surprising, since the
simulation of hk

t (X t, 1) =
∫ t

0 10(Xs − 10)ds−C1,0 + Jk−1(t,Xt, 0) will make more deviation than that
of hk

t (Xt, 0) = −C0,1 + Jk−1(t,Xt, 1).

3.3 Upper bound

3.3.1 Third Algorithm

To solve the problem of remark 3.1, we introduce the third algorithm, which changes the algorithm of
lower bound to calculate a strict upper bound J̃k (t,Xt, i)for J

k (t,Xt, i). First, we refer to equations
(32) and (33) in the paper of Carmona and Ludkovski [2]:

Hk (m∆t, xn
m∆t, i) =

{
ψi (m∆t, xn

m∆t) ∆t+Hk
(
(m+ 1) ∆t, xn

(m+1)∆t
, i

)
,no switch;

−Ci,j +Hk−1 (m∆t, xn
m∆t, j), switch to j.

(16)

ĵ(m∆t; i) = arg max
j

(
−Ci,j +Hk−1(mδt, xn

m∆t, j), (17)

ψi(m∆t, xn
m∆t)∆t+ (Ê)m∆t[H

k ((m+ 1)∆t, ·, i)](xn
m∆t)]

)
.

We now change equation (17) to:

j̃(m∆t; i) = arg max
j

(
−Ci,j +Hk−1(mδt, xn

m∆t, j), (18)

ψi(m∆t, xn
m∆t)∆t+Hk ((m+ 1)∆t, ·, i)](xn

m∆t)
)
.

Thus, we choose the switching time by “precognition” — assuming we know (Xt)s<t<T already
at time s. J̃k (t,Xt, i) is therefore an upper estimate of Jk (t,Xt, i). Then we do regression on
J̃k (t,Xt, i), and set

h̃k
t (X t, i) =

∫ t

0
ψi (Xs) ds− Ci,j + J̃k−1 (t,Xt, j) .

Finally, we can use the second algorithm to calculate the upper bound based on payoff func-
tions determined by h̃k. Results are shown in Table 6 below. For convenience we denote J̃k

1 for

J̃k (t = 0,X0 = 10, 1). Observe that there are no guarantees that the upper bound computed in this
way is larger than J̃k

1 . The upper bound calculated here is higher than quasi-upper bound calculated
with the second algorithm, except for the case when k = 1 (we have one only switching opportunity).
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Np switch oppts 1 2 9 10

32000
J̃k

1 5.297(0.032) 6.208(0.030) 6.422(0.030) 6.422(0.030)
upper bound 4.001(0.049) 5.900(0.029) 6.483(0.028) 6.483(0.028)

Table 6: Results of the third algorithm. NN = 40, Np = 32000, N = 1000, NK = 100. The initial
regime is mode 1.

4 Second Numerical Example

Now we suppose that the operator’s actions impact the price and cost, i.e. the evolution of Xt. As an
illustration, we change the model in the first numerical example to

{
dXt = 2(9.5 −Xt)dt + 2dWt, if ut = 1,
dXt = 2(10.5 −Xt)dt + 2dWt, if ut = 0,

X0 = 10. (19)

When the operator decides to run the plant, the price of electricity will decrease, so the “balance
point” is Xt = 9.5, lower than Xt = 10.5 when we shut down the plant. The payoff remains the same
as in (8). According to the algorithm introduced by [2], we change (16) and (17) to:

Hk (m∆t, xn
m∆t, i) =

{
ψi (m∆t, xn

m∆t) ∆t+Hk
(
(m+ 1) ∆t, xn

(m+1)∆t
, i

)
no switch;

−Ci,j + ψj (m∆t, xn
m∆t)∆t+ Êm∆t[H

k−1 ((m+ 1)∆t, ·, i)](xn
m∆t), switch to j.

(20)

and

ĵ(m∆t; i) = arg max
j

(
−Ci,j + ψj (m∆t, xn

m∆t) ∆t+ Êm∆t[H
k−1 ((m+ 1)∆t, ·, j)](xn

m∆t), (21)

ψi(m∆t, xn
m∆t)∆t+ (Ê)m∆t[H

k ((m+ 1)∆t, ·, i)](xn
m∆t)

)
.

4.1 Lower Bound

As mentioned in [2], we separately simulate (Xt) under the 2 regimes with mode 0 and mode 1, and
use the LS scheme over each set of paths xn,i

m∆t, i ∈ 0, 1,m ∈ 1, 2, ...,M . The results are given in Table
7.

switch oppts 1 2 9 10

Ĵ10
1 1.255(0.028) 3.366(0.062) 4.674(0.047) 4.675(0.047)

Ĵ10
0 2.958(0.068) 4.181(0.046) 4.935(0.046) 4.936(0.047)

Table 7: Simulated lower bound with X0 = 10, NN = 40, Np = 16000, N = 1000, NK = 100. Ĵ10
1

denotes the lower bound with initial regime mode 1, Ĵ10
0 the lower bound with initial regime mode 0

With X0 = 10, it is better to begin with mode 0, especially when the number of switching
opportunities k is small. Similar to (9), we can draw the switching boundary in Figure 8. It is not so
symmetric compared with the switching boundary of the first numerical example.
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Figure 8: The graph of the switching boundary with basis functions {B1, B2, B4, B7, B9}, Np =
16000, k = 10. The upper curve is the switching boundary from mode 0 to mode 1, the lower curve is
theX switching boundary from mode 1 to mode 0.

Remark 4.1. As we can see from ( 20), this algorithm for the lower bound for the second numerical
example is based on this deduction:

if (property): Ĵ((m+ 1)∆t,Xm∆t, 1) and Ĵ((m+ 1)∆t,Xm∆t, 0) are lower bounds for any value
of Xm∆t, where m ∈ N,

then: we prove the same property at time (m− 1)∆t.

But in the first numerical example, the justification of the algorithm for the lower bound did not re-
quire this property, in view of the fact that ( 16) does not include the term Êm∆t[H

k ((m+ 1)∆t, ·, i)](xn
m∆t).

Figure 6 tells us that we can not assure this property, i.e. for same points Xt, we can have
Ĵ((m + 1)∆t,Xm∆t, 1) and Ĵ((m + 1)∆t,Xm∆t, 0) larger than true value, especially when Xt is far
from 10. So the results offered here may not be good (the lower bound here might be even higher than
the true value). The lower bound algorithm in the second numerical example requires therefore much
more attention in the select of basis function to make sure the the lower bound computed have this
property.

4.2 Quasi-upper Bound

We then use the second algorithm from Section 3.2.2 to calculate the quasi-upper bound.

switch oppts 1 2 9 10

Ĵ10
1 1.255(0.028) 3.366(0.062) 4.674(0.047) 4.675(0.047)

upper bound 1.800(0.090) 3.619(0.063) 4.747(0.048) 4.747(0.048)

Table 8: Quasi-upper bound with X0 = 10, NN = 40, Np = 16000, N = 1000, NK = 100, using the
second algorithm and basis functions {B1, B2, B4, B7, B9}. The initial regime is mode 1.

The difference between the quasi-upper bound and the lower bound is smaller than the first
numerical example. If we use the lower bound algorithm introduced in the second numerical example
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to calculate the first numerical example, i.e. we see the first numerical example as

{
dXt = 2(10 −Xt)dt + 2dWt, if ut = 1,
dXt = 2(10 −Xt)dt + 2dWt, if ut = 0,

X0 = 10, (22)

and calculate the lower bound in a similar way with (19)

we find that (21) and (20) may increase the lower bound computed, as was shown in Table 9. This
may be one of the reasons why the difference in the second numerical example is much less than that
of the first example. The “improvement” of the lower bound using the algorithm of second numerical
example may be explained by Remark 4.1.

switch oppts 1 2 9 10

Algorithm in Example 1 3.704(0.084) 4.996(0.067) 5.743(0.070) 5.744(0.070)

Algorithm in Example 2 3.724(0.080) 5.031(0.084) 5.821(0.093) 5.820(0.096)

Table 9: The result of quasi-upper bound with X0 = 10, NN = 40, Np = 8000, using the second
algorithm and basis functions {B1, B2, B4, B7, B9}. The initial regime is mode 1.

5 Conclusion

In this paper we have extended a new method used in pricing American options to investigate the
numerical solution of operational flexibility problems. Our main theoretical proposal is trying to
represent this kind of problems as a solution of a dual minimization problem. Due to the complexity
of our problem, we can not compute a tight upper bound. However, we find a way to calculate a tight
quasi-upper bound, which is not strictly an upper bound but higher than true value in our example.
We have also considered the case when the operator’s action may impact the price of the commodity.
In the future, a better numerical solution and a better set of basis functions are needed to compute a
tight lower and upper bound for this sort of problems.
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7 Appendix: selected program code for our algorithms

We give the code of the algorithm (in Matlab) for the computation of the upper bound using the
second algorithm in the first numerical example.

clear;

NNN=40; %Number of separate runs

N_p=16000; % Number of paths to simulate the lower bound

N=1000; % Number of paths to determine Martingale to calculate the upper bound

N_K=100; %Number of inner paths to determine Martingale

T=2; %Expired time

M=400; %The division of time (0,1,2,...M)*delta_t=T

K=11; %the nomber of opportunity of switch

l=5; % The number of basis functions

J0_K=zeros(NNN,K);%The lower bound with different switching

%opportunity with initial regime mode 0, when K=1,

%we can not change,and we note J0_K(:,1)=0 for convenience

J1_K=zeros(NNN,K); %The lower bound with different

%switching opportunity with initial regime mode 1, when K=1,

%we can not change,and we note J1_K(:,1)=0 for convenience

Average=zeros(NNN,K); %The upper bound for different runs (NNN)

%and different switching opportunities (k=K-1)

Maxtimes=zeros(N,K,NNN); %To record the time when the (h-M) is the largest

Max_X=zeros(N,K,NNN);%To record the largest (h-M)

cost=0.3;

k_mont=5;

for iiii=1:NNN

Pre_Simu_X = 10*ones(N_p,M+1); %Matrix of N_p paths of (X_t) at

%time grids (t=0~T) -> Pre_Simu_X (:,t+1)

medi_x=10*ones(N_p,1); %This data is used to calculate Pre_Simu_X. and X_0=10

for i_Time=2:1:(M+1)

for i_k_mont=1:1:k_mont

Pre_Simu_W = randn(N_p,1); %Matrix of simulation results of W FIN

medi_x= medi_x + 2*(10-medi_x)*T/k_mont/M + 2*Pre_Simu_W* sqrt(T/M/k_mont);

end

Pre_Simu_X(:,i_Time)=medi_x;

end

clear Pre_Simu_W

%% REGRESSION %%

% look up for the Page 16 of Carmona and Ludkovski, 2007

H_post=zeros(N_p,K,2);%H^k((m+1)\delta t,x_{(m+1)\delta t} ^{n}, i), 1<=n<=N_p ,

%i=initial regime 0 or 1 two status at time: i_time+1

%H_post(:,:,1): initial regime is mode 0;

%%H_post(:,:,2): initial regime is mode 1;

H_anti=zeros(N_p,K,2);%H^k(m\delta t,x_{m\delta t} ^{n}, i),
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Expt_H=zeros(N_p,K,2);

%\hat{E}_{m\delta t,}[H^k((m+1)\delta t,x_{(m+1)\delta t} ^{n}, i)]

% 2 status for ::1 -> initial status 0; ::2 ->initial status 1

Coeff_0=zeros(l,K,M+1); % coefficients of basis functions for beginning with mode 0

Coeff_1=zeros(l,K,M+1); %coefficients of basis functions for beginning with mode 1

Psi=zeros(l,N_p); %The value of basis functions (l)

%at different time for different path (N_p)

for i_time=-(-M:1:-2) %implement the algorithm to calculate the lower bound

for i_K=1:1:K

for i_N_p=1:1:N_p

h00=Expt_H(i_N_p,i_K,1); %if we remain on mode 0 (h00 continuation value)

h11=Expt_H(i_N_p,i_K,2)+10*(Pre_Simu_X(i_N_p,i_time)-10) * (T/M);

%if we remain on mode 1 (h11 continuation value)

if i_K>1 && Pre_Simu_X(i_N_p,i_time)>10

h01=-cost+

10*(Pre_Simu_X(i_N_p,i_time)-10)*(T/M)+

Expt_H(i_N_p,i_K-1,2);

%if we change from mode 0 to mode 1 (h01 switching value)

else

h01=-inf;

%if k<1 and X_t<10,

%the transfer from mode 0 to mode 1 is forbidden

end

if i_K>1 && Pre_Simu_X(i_N_p,i_time)<10

%if we change from mode 1 to mode 0

h10=-cost+Expt_H(i_N_p,i_K-1,1); %if k<1 and X_t>10,

%the transfer from mode 1 to mode 0

%is forbidden (h10 switching value)

else

h10=-inf;

end

if h00 >= h01 % now, we compare the obtained continuation

%value against the regressed switching value

H_anti(i_N_p,i_K,1) = H_post(i_N_p,i_K,1);

else %h00 < h01

H_anti(i_N_p,i_K,1)= -cost+

10*(Pre_Simu_X(i_N_p,i_time)-10)*(T/M)+H_post(i_N_p,i_K-1,2);

end

if h11>=h10

H_anti(i_N_p,i_K,2) = H_post(i_N_p,i_K,2)+

10*(Pre_Simu_X(i_N_p,i_time)-10)*(T/M);

else

H_anti(i_N_p,i_K,2) = H_post(i_N_p,i_K-1,1)-cost;

end

end

end

Psi(1,:)=ones(N_p,1)’;
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Psi(2,:)=Pre_Simu_X(:,i_time-1)’;

Psi(3,:)=Pre_Simu_X(:,i_time-1)’.^2;

Psi(4,:)=max(Pre_Simu_X(:,i_time-1)’-10,0);

Psi(5,:)=Pre_Simu_X(:,i_time-1)’.^3;

% Psi(1,:)=ones(N_p,1)’;

% Psi(2,:)=Pre_Simu_X(:,i_time-1)’;

% Psi(3,:)=log(Pre_Simu_X(:,i_time-1)’);

% Psi(4,:)=Pre_Simu_X(:,i_time-1)’.^2;

% Psi(5,:)=log(Pre_Simu_X(:,i_time-1)’).*Pre_Simu_X(:,i_time-1)’;

% Psi(6,:)=Pre_Simu_X(:,i_time-1)’.^2.*log(Pre_Simu_X(:,i_time-1)’);

% Psi(7,:)=max(Pre_Simu_X(:,i_time-1)’-10,0);

% Psi(8,:)=exp(Pre_Simu_X(:,i_time-1)’-10);

% Psi(9,:)=Pre_Simu_X(:,i_time-1)’.^3;

for i_K=1:1:K %regression

Coeff_0(:,i_K,i_time-1)=Psi’\H_anti(:,i_K,1); % l*1= N*l \ N*1

Coeff_1(:,i_K,i_time-1)=Psi’\H_anti(:,i_K,2) ; % l*1= N*l \ N*1

Expt_H(:,i_K,1)= Psi’*Coeff_0(:,i_K,i_time-1);

Expt_H(:,i_K,2)= Psi’*Coeff_1(:,i_K,i_time-1);

end

H_post=H_anti; %prepare for the (m-1)\Delta t

H_anti=zeros(N_p,K,2);

end

for KK=2:1:K

J0_K(iiii,KK)=sum(H_post(:,KK,1))/N_p;

% the value of this product at time t=0 with initial mode=0 NNN*K

J1_K(iiii,KK)=sum(H_post(:,KK,2))/N_p;

% the value of this product at time t=0 with initial mode=1 NNN*K

end

J0_K

J1_K

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% The Calculate of Upper bound %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Pre_Simu_X = 10*ones(N,M+1);

%Matrix of simulation results of X_t (t=0~T) -> Pre_Simu_X (:,t+1) INI

h_avant=zeros(N,(M+1)); % Calculate the \int_0^t \psi(X_t,i) ds

h_mm=zeros(N,1); % Aid to calculate h_avant

medi_x=10*ones(N,1);

for i_Time=2:1:(M+1)

for i_k_mont=1:1:k_mont

Pre_Simu_W = randn(N,1); %Matrix of simulation results of W FIN

h_mm=h_mm+10*(medi_x-10)*T/M/k_mont;

medi_x=medi_x+2*(10-medi_x)*T/k_mont/M+2*Pre_Simu_W* sqrt(T/M/k_mont);
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end

h_avant(:,i_Time)= h_mm;

Pre_Simu_X(:,i_Time)=medi_x;

end

%%BASIS FUNCTION %%

Psi=zeros(N,(M+1),l);

Psi(:,:,1)=ones(N,(M+1));

Psi(:,:,2)=Pre_Simu_X;

Psi(:,:,3)=Pre_Simu_X.^2;

Psi(:,:,4)=max(Pre_Simu_X-10,0);

Psi(:,:,5)=Pre_Simu_X.^3;

Psi=shiftdim(Psi,2); %l,N_p,(M+1)

% Psi(:,:,1)=ones(N,(M+1));

% Psi(:,:,2)=Pre_Simu_X;

% Psi(:,:,3)=log(Pre_Simu_X);

% Psi(:,:,4)=Pre_Simu_X.^2;

% Psi(:,:,5)=Pre_Simu_X.*log(Pre_Simu_X);

% Psi(:,:,6)=Pre_Simu_X.*Pre_Simu_X.*log(Pre_Simu_X);

% Psi(:,:,7)=max(Pre_Simu_X-10,0);

% Psi(:,:,8)=exp(Pre_Simu_X-10);

% Psi(:,:,9)=Pre_Simu_X.^3;

clear Pre_Simu_W

%% APPROXIMATIONS TO THE OPTIMAL MARTINGALE %%

Diff=zeros(N,K); %Matrix the largest difference for every path (N)

%and every switching opportunities (K).

for i_N=1:1:N

h_minus_M=zeros(M+1,K);%We will calculate the difference $ h-\mathcal{M}$ i

%n this matrix for all time grid (M+1),

%and switch oppts(K)

h=zeros(1,K); %h for every time grid

h_minus_M(1,:)=-inf*ones(1,K); %suppose that at t=0, we do not change the mode

M_m_m=zeros(1,K); %The approximation of Martingal M and

%it changes as i_time changes. At time t=0, M=0

for i_time=2:1:M+1
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%% CALCUL EXPT_Delta_V%%

EXPT_Delta_V=zeros(1,K); %E_{t-1}(V_t)

Simu_X_K= Pre_Simu_X(i_N,i_time-1)*ones(N_K,1); %N_k*1 inner paths

Simu_W_K=randn(N_K,k_mont);

h_mmm=zeros( N_K,1); %from t-1 to t, V_t and E_{t-1}(V_t) have

%different \int_{t-1}^{t}\psi(X_s).

%Here h_mmm= \int_{t-1}^{t}\psi(X_s)

for i_k_mont=1:1:k_mont

h_mmm=10*(Simu_X_K-10)*T/M/k_mont+h_mmm;

Simu_X_K=Simu_X_K+2*(10-Simu_X_K)*T/M/k_mont+

2*Simu_W_K(:, i_k_mont)*sqrt(T/M/k_mont);

end

Psi_N_K=[ones(N_K,1) Simu_X_K Simu_X_K.^2 max(Simu_X_K-10,0) Simu_X_K.^3];

% Basis function for inner paths

% 1 ones(N_K,1)

% 2 Simu_X_K

% 3 log(Simu_X_K)

% 4 Simu_X_K.^2

% 5 Simu_X_K.*log(Simu_X_K)

% 6 (Simu_X_K.^2).*log(Simu_X_K)

% 7 max(Simu_X_K-10,0)

% 8 exp(Simu_X_K-10)

% 9 Simu_X_K.^3

for i_N_K=1:1:N_K

Psi_K=Psi_N_K(i_N_K,:);

if i_time<=M

mmd=max(10*(Simu_X_K(i_N_K)-10)*T/M+Psi_K*Coeff_1(:,:,i_time),

Psi_K*Coeff_0(:,:,i_time)-cost);%J^{k}(t,X_t,1)

else

mmd=0; %when i_time=M+1, J^{k}(t,X_t,1)=0

end

EXPT_Delta_V=EXPT_Delta_V+mmd+h_mmm(i_N_K);

%+10*(Simu_X_K(i_N_K)-10)*T/M; Coeff: l,K,M+1

end

EXPT_Delta_V=EXPT_Delta_V/N_K; % E_{t-1}(V_t) - \int_0^{t-1} \psi(X_s) ds

%% CALCUL Delta_V %%

if i_time<=M %to calculate V_t

mmd=max(10*(Pre_Simu_X(i_N,i_time)-10)*T/M

+Psi(:,i_N,i_time)’*Coeff_1(:,:,i_time),

Psi(:,i_N,i_time)’*Coeff_0(:,:,i_time)-cost);

else

mmd=0;

end

Delta_V=mmd ; %+10*(Pre_Simu_X(i_N,i_time)-10)*T/M ;
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M_m_m=M_m_m+Delta_V+(h_avant(i_N,i_time)-h_avant(i_N,i_time-1))-

EXPT_Delta_V; %calculate the Martingale at time t

h=zeros(1,K); %for the beginning, two states(:,:,1)->psi_0(:,:,2)->psi_1

if i_time<=M %to calculate h_t

for KK=2:1:K

h(1,KK)=h_avant(i_N,i_time)-cost+

Psi(:,i_N,i_time)’*Coeff_0(:,KK-1,i_time);

end

else

h(1,:)=h_avant(i_N,i_time); %if k=1, no opportunities to change

end

h_minus_M(i_time,:)=h-M_m_m;

end

[Diff(i_N,:) Maxtimes(i_N,:,iiii)]=max(h_minus_M);

Max_X(i_N,:,iiii)=Pre_Simu_X(i_N,Maxtimes(i_N,:,iiii));%Pre_Simu_X: N,M+1

end

Average(iiii,:)=sum(Diff)/N

clear Psi

end

J0_K_average=sum(J0_K)/NNN

J0_K_sigma=sqrt(var(J0_K))

J1_K_average=sum(J1_K)/NNN

J1_K_sigma=sqrt(var(J1_K))

average=sum(Average)/NNN

sigma=sqrt(var(Average))

%Max_X=shiftdim(Max_X,2); %NNN,N,KK

%Maxtimes=shiftdim(Maxtimes,2); %NNN,N,KK

%plot(reshape(Maxtimes(:,:,KK),[N*NNN,1]),reshape(Max_X(:,:,KK),[N*NNN,1]),’.’);

% plot(Maxtimes(:,KK),Max_X(:,KK),’.’);


