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Abstract. Swing options are the main type of volumetric contracts in commodity markets. A
swing contract gives the holder the right (but not the obligation) to adjust volume of received
commodity at her discretion.

Unlike paper assets, trading in physical commodities often takes place over time and therefore
involves volume as a second key state variable. Often consumption rates of the commodity are
unpredictable and make fixed delivery amounts uneconomic. To mitigate such volume risk, a
swing contract gives the buyer the opportunity to manage fluctuating commodity demand levels in
exchange for a fixed upfront fee. By exercising her swing up/down rights, the buyer can dynamically
match supply and demand levels while hedging her costs. Swing options are widely offered by
market makers and used extensively by major energy companies, especially in electricity and fossil
fuel markets. Contracts with swing features are available both as stand-alone financial tools, and
can also be found embedded within structured physical transactions.

1. Definition and Use. A typical definition of a swing option is as follows. At times n =
1, 2, . . . , N the buyer is to receive a baseload amount K̄ of the commodity paying the strike price
P̄ . In addition, over the life of the contract, the buyer has Nc ≤ N swing rights to temporarily
vary these deliveries, instead requesting to receive an amount kn. This request is usually made on
a 1-period ahead basis, so that the supplier has time to adjust his delivery. The swing amount
kn is subject to the constraint kmin ≤ kn ≤ kMax, where kmin (resp. kMax) is the minimal (resp.
maximal) allowable one-period delivery volume. The timing of these exercises is at the discretion
of the buyer. Thus, depending on the needs of the buyer, the amount received can be swung up or
down up to Nc times.

Let Yn denote the discounted present value of the net cash flow beyond the income expected from
the baseload contract, due to the exercise of a swing right on date n. Assuming that the cashflow
amount is linear in the swing volume and no other constraints are present, it is optimal to always
apply full (bang-bang) volumetric exercise, i.e. kn ∈ {kmin, kMax}. It follows that

(1) Yn = e−rn(kn − K̄)(Pn − P̄ ),

where Pn is the spot price of the commodity in period n, and r is the discount rate for one period.
Note that if the exercise decision was made before n, then Yn in (1) may be negative.

Take-or-Pay Provisions. To bound possible swings from the baseload contract, global volume con-
straints are often imposed. A Take-or-Pay provision adds the constraint Smin ≤

∑N
n=1 kn ≤ SMax,

where Smin (resp. SMax) is the minimal (resp. maximal) total volume over the N periods. Thus,
the buyer is required to place her total cumulative consumption within a pre-defined volume band.
This rule is enforced via penalties on the buyer (hence Take-or-Pay) if the provision is violated.

Nomination Contracts. A nomination contract is a variant of a swing option, where the swing
amounts are permanent. Thus, changing the nomination amount from K̄ to kn implies that the
new baseload amount will be kn for the remainder of the contract. Such ratcheting rules are
common in pipeline contracts.
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Refraction Periods. Some contracts impose a minimal refraction period δ between consecutive
swings to prevent too rapid an exercise. Refraction periods also appear in research papers that
consider swing options in continuous time, see Section 2 below.

Most existing contracts combine several of the above features and also include further custom
rules, so that “vanilla” swing options are actually a rarity. Before proceeding with our discussion,
we give a few examples of real-life swing contracts.

Swing Option in the Natural Gas Market. Consider an industrial natural gas consumer that wishes
to hedge their future input costs. The consumer does not know consumption volume precisely
(which depends on demand for output, operational constraints, other suppliers, etc.), but has
some volume range based on past usage. The consumer purchases a month-long swing option
to offset this “volumetric risk” exposure. The swing option gives them the right to buy up to
10,000 MMBtu at price of P̄ = $6 in each of the four weeks; total volume must be between
Smin = 10, 000 and SMax = 30, 000 MMBtu over the month. In this example, Nc = N = 4,
kmin = K̄ = 0, kMax = 10000.

Recall Option for an Oil Pipeline. An oil pipeline company delivers oil from hub A to an industrial
customer at point B. The pipeline plans on delivering 1000 bbl/day for the next month at the for-
ward price of P̄ = 100 $/bbl. However, due to pipeline congestion, supply disruption or engineering
problems, the pipeline may be unable to fulfill its obligation. To mitigate this risk, the pipeline
purchases a recall option from its customer. Upon giving notice the day before, the recall option
gives the pipeline the right to withhold delivery (or deliver less than the baseload amount) on up
to three days during the month. In this example, Nc = 3, N = 30, kmin = 0, K̄ = kMax = 1000.
Similar interruptible delivery contracts are common in electricity markets, see [10, 16, 22].

Load Serving Contract for an Electricity Utility. Electricity swing options have become popular
with the de-regulation of electricity markets which led to volume risk management by the power
serving entities (PSE). A PSE is obligated by law to provide power to its customers and must
adjust its production to maintain equilibrium with the fluctuating demand. Such dynamic load
management can be synthetically reproduced by a swing contract that the PSE in effect sells to its
customers. By buying an offsetting swing option on its input fossil fuel (such as natural gas), the
PSE can transfer the corresponding volume risk exposure to other market participants.

2. Valuation and Theoretical Issues. From a financial engineering perspective, a swing option
is an exotic compound timing option on the underlying commodity asset. More precisely, it closely
resembles a series of American options. Indeed, if the number of swing rights is Nc = 1, then the
swing collapses to the usual American option [eqf05-007]; if the number of swing rights is equal to
the number of periods Nc = N , then the value of the swing contract is equal to a strip of European
options for each period. Let us denote by V (t,m, p) the value of owning a swing contract on date t
with m remaining swing exercise rights and current price p of the commodity. Then the following
a priori bound is always true irrespective of the underlying price process:

m · EC(t, p) ≤ V (t,m, p) ≤ m ·AC(t, p),

where EC (resp. AC) denotes the value of a European (resp. American) option with expiration
date N .

In the following discussion we assume that kn ∈ {0, 1}, which up to scaling is equivalent to
full volumetric exercise. To setup a mathematical model, it is necessary to construct a framework
for the multiple exercise opportunities. Recalling the concept of stopping times, define the set of
m-tuples of stopping times used to model the multiple exercises as

(2) S(m)
α,β = {~τ = (τ1, . . . , τm) : τi stopping time and α ≤ τ1 < τ2 < . . . < τm ≤ β}.
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Then the optimal multiple stopping problem corresponding to a basic swing option with maturity
T reduces to computing

(3) V (t,m, p) = sup
~τ∈S(m)

t,T

Et[Y~τ ], where Y~τ :=
m∑
i=1

Yτi and Pt = p.

Beyond finding the value of the supremum in (3), it is of interest to know whether this supremum is
actually attained (existence of optimal swing exercise strategy), and if yes, finding a computational
algorithm giving a “minimal” set of optimal exercise times ~τ . For models of (3) in continuous-time,
the refraction time constraint τi ≥ τi−1 + δ, δ > 0 must be added to (2), otherwise τi−1 < τi is
vacuous.

The problem (3) is best solved by an inductive procedure based on the solution of a sequence of
single-exercise American options. Namely, [9] have proved that

(4) V (t,m, p) = sup
t≤τ≤T

Et [Yτ + V (τ,m− 1, Pτ )] ,

where the maximization is over all stopping times τ , and where Et denotes conditional expectation
at time t. Equation (4) is of the same flavor as the American/Bermudan option problem, but with
additional state variable m.

In a Markovian setting, an optimal swing exercise policy is characterized by an exercise boundary
B, similar to American options. Namely, the exercise boundary divides the commodity price space
into a continuation region, where the holder of the swing does nothing, and an exercise region,
where it is optimal to exercise a swing right. However, analysis of the swing exercise boundary is
complicated by the fact that today’s exercise reduces future delivery flexibility. Thus, the swing
exercise boundary is a function both of time and number of remaining rights, B = B(t,m). In
certain settings [6, 9], it can be shown that B(t,m) is connected, and moreover is monotone in
number of rights m and similarly is monotone in t. However, general properties of B(t,m) remain
unresolved. An excellent summary of the structural features of swing options can be found in the
book by Eydeland and Wolyniec [15, Chapter 8].

The major difficulties in valuing and analyzing swing options arise due to the high-dimensional
setting and the contract’s path-dependent features. Analysis of a basic swing option involves two
state variables, namely the current price Pn and the remaining number of exercise rights Mn. If a
Take-or-Pay provision is present, then one must also consider the current cumulative volume Sn :=∑n

j=1 kj . Both the M and S state variables depend on the particular swing exercise policy and are
therefore path- and control-dependent. This precludes simple application of dynamic programming
to (4). Moreover, models of underlying commodity price processes (see [eqf17-013,eqf17-022]) are
often complex and include multiple factors to capture the observed seasonality, mean-reversion and
nonlinearity in prices. Recall that if the exercise decision is made on a forward basis, modeling of
the spot-forward relationship [eqf17-009] is also needed.

To illustrate the difficulties involved, consider a simple binomial tree model that assumes a one-
dimensional random walk description of the underlying commodity price (Pn). To price a swing
option we then need to set up a forest of Nc such trees, with a tree for each possible number
of remaining exercise rights. One can then proceed using the backward dynamic programming
algorithm like for standard American options [eqf05-007], where a swing exercise triggers a jump
from a tree with Mn = m remaining rights to a tree with Mn = m− 1. Such an algorithm imposes
memory and space constraints and raises efficiency issues. More sophisticated models might involve
multiple factors or jumps (or Take-or-Pay provisions) and would require even more complex forests
of trees.
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3. Historical Perspective. Initial discussion of swing options has appeared in early 1990s in
energy practitioner magazines, see e.g. [3, 11, 12]. At the same time a limited literature studied the
embedded multiple exercise opportunities [30, 25, 14]. Theoretical treatment of swing options was
first carried out rigorously by [21]. The connection to multiple stopping problems was established
by Carmona and Touzi [9], who showed in a certain mathematical framework that a swing option
is equivalent to Nc compound American (optimal stopping) options on the underlying, see (4).
This fact suggests pricing of swing options based on existing methods for American options. In a
simplified model with single underlying risky asset, swing options could be for example priced by
solving partial differential equations like in the classical Black- Scholes theory [eqf12-002]. However,
non-linearities rule out solutions in the classical sense, and complex free boundaries make the design
and control of numerical schemes quite a challenge.

To overcome these challenges, a variety of approaches have been suggested, including other partial
differential equation methods ([13, 31] and [eqf12-007]), stochastic dynamic programming ([2, 17]),
the aforementioned binomial and trinomial trees ([21] and [eqf12-017]), Monte Carlo simulation
methods ([27, 4, 20, 16] and [eqf13-006]), approximate techniques ([14, 23, 29] and [eqf13-024]) and
optimal quantization ([1]). Also see [16, 19, 24, 32] for analytic pricing of swing contracts under
certain exotic models for the underlying commodity and [28] for game-theoretic aspects of swing
options. Beyond the basic contracts, the modern practitioner/research trend is to value swing
options using simulation tools which can achieve excellent computational complexity properties
with respect to underlying models. However, as a trade-off, the error analysis of many simulation
schemes is difficult, and usually only a lower bound on price can be obtained.

4. Hedging Issues. Hedging of swing options can be carried out in the same framework as Amer-
ican options. However, several additional issues make hedging difficult in practice. First, recall
that many buyers of swing options are industrial customers. Empirical evidence [15] suggests that
such buyers often exercise sub-optimally in order to meet their other obligations (e.g. as suppliers
of electricity). Sub-optimal exercise may be justified if the spot market is not sufficiently liquid, as
is the case in many commodities, especially those with strong locational characteristics. This leads
to non-trivial financial implications to sellers of swing options who hedge optimally.

Secondly, typically swing exercise decisions are made day-ahead on the basis of forward prices.
Since the cashflow is based on spot prices, basis risk between forward and spot price becomes of
concern (both to buyer and seller of swing contracts). This is particularly so in electricity markets,
where the commodity is non-storable and there is no definite convergence between day-ahead and
real-time prices.

The underlying commodity market may be financially incomplete [eqf04-006] for other reasons.
As such, the seller of the swing option cannot fully hedge her exposure and therefore the no-
arbitrage risk-neutral valuation method might not make sense. Finally, in some less liquid markets,
the buyer may be exercising market power by manipulating demand through her swing policy and
therefore affecting future prices.

5. Extensions and other Contracts with Multiple Exercise. With wide use of swing options,
other modifications to the basic contract have become common.

Chooser Flexible Caps. A cap contract with strike P̄ on a 3-months interest rate is a portfolio of
options on the quarterly interest payments that have to be made. Let us assume that the life of the
contracts is N quarters, and the nominal is X. Each individual option is called a caplet. It covers
one of the N quarters, and its payoff is X ·∆t · (L3 − P̄ )+, where ∆t is the daycount fraction, and
L3 denotes the quarter-end 3-month LIBOR rate. A chooser flexible cap is a contract such that at
each reset date, the holder of the contract has the right to decide whether to exercise that particular
caplet and count it as part of the Nc allowable ones, or spare it for later use, each decision being
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final. The remaining caplet rights expire worthless if not used before the end of the N periods. A
chooser cap reduces to a regular cap [eqf11-006] when Nc = N , while it can be viewed as a standard
American/Bermudan option on the interest rate L3 when Nc = 1. Valuation of such contracts was
studied in [27].

Two Sided Swing Options. Some physical contracts combine the swing and recall features described
above. Thus, the baseload contract is augmented with Nr recall rights for the party delivering the
commodity, and Nc swing rights for the buyer. The interaction of these rights leads to a stochastic
game between the two counter-parties, with the buyer being the minimizing agent, and the seller
the maximizing agent. Valuation of such two-sided swing options is related to Dynkin games as
explained in [5].

Gas Storage. An owner of a gas storage facility attempts to maximize revenue by injecting gas into
storage when prices are low and withdrawing gas when prices are high. Exercise of such flexibility
can be viewed as a nomination swing option where kn is allowed to be both positive and negative (to
model withdrawals). The volume constraints Smin ≤ Sn ≤ SMax then correspond to the physical
size constraints of the facility. Gas storage valuation is complicated by additional storage costs
which add further path-dependency to the problem, see [4, 8].

Tolling Agreements. In a tolling agreement, the buyer is granted use of a commodity generating
facility for a fixed period of time. The buyer can then run the facility when commodity price is
high and keep it shut down when prices are low. This is again a nomination swing option with
additional engineering constraints, such as fixed switching costs. Modeling of such contracts fits
within the more general framework of optimal switching problems ([7, 18]).

Employee Stock Options. Company employees are often granted multiple stock options in their
employers [eqf03-015]. Partial exercise of such options by risk-averse employees is similar to a
swing call option, as multiple exercises must be considered ([26]).
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