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Abstract— We study Bayesian quickest detection problems
where the observations and the underlying change-point are
coupled. This setup supersedes classical models that assume
independence of the two. We develop several continuous-time
formulations of this problem for the cases of Poissonian and
Brownian sensors. Our approach to detection uses methods of
nonlinear filtering and optimal stopping and lends itself to an
efficient numerical scheme that combines particle filtering with
Monte Carlo dynamic programming. The developed models and
algorithms are illustrated with numerical examples.
Keywords: Bayesian Quickest Detection; Hawkes Process; Particle
Filtering; Monte Carlo Dynamic Programming.

I. INTRODUCTION

Quickest detection of signal changes is an important prob-
lem in a variety of disciplines ranging from biosurveillance
to network communications. The typical formulation is that
at unknown instant θ, the statistical profile of an observation
stream (Yt) undergoes a disruption. The task of the controller
is to fuse the sequentially collected information in order
to detect the change-point as quickly as possible while
controlling for probability of false alarms.

Models of quickest detection may be classified according
to their assumptions on θ. Two main formulations of change-
point detections are min-max and Bayesian [20]. The min-
max approach takes θ as an unknown constant and aims
to minimize worst-case performance, i.e. the optimization
criterion involves supremum over all θ ∈ R+. Consideration
of worst-case allows for robustness, but is often too pes-
simistic in practice [17]. In the Bayesian setup, the disorder
time is treated as a random variable with a specified prior
distribution, θ ∼ p(θ) that captures accumulated knowledge
about possible occurrences of the change-point. The quick-
est detection problem is then formulated in terms of the
posterior probability of the disorder already having taken
place. Models of increasing complexity, including a variety
of observation schemes and multiple channels have been
considered in [4], [7], [14], [15], [21], [22].

Fixing a model for θ, both methods then postulate given
dynamics for observations (Yt) and the respective impact of
the disorder. A fundamental criticism of this approach is that
it rules out any (explicit) dependence between θ and (Yt).
Indeed, in the min-max approach, θ is a deterministic con-
stant; in the Bayesian approach all classical models assume
autonomous description of θ, not involving (Yt). In other
words, prior to disorder, the conditional distribution θ|θ > t
is taken to be independent of (Ys)s≤t. For example, in the
early seminal work of Shiryaev [21], θ has an exponential

distribution, i.e. a constant hazard rate. While the optimality
properties of detection rules such as CUSUM or Shiryaev-
Roberts have been thoroughly studied in a variety of models
[7], [16], [19], to our knowledge, no such proofs (and in fact
only minimal analysis and numerical studies) are available
for the case of observation-changepoint interaction.

In this paper, we extend the current literature by removing
this independence assumption within the Bayesian paradigm.
The main idea of our modeling is to view θ through its hazard
rate µt; we then treat (µt, Yt) as a coupled stochastic process.
Detection of θ then reduces to a stochastic filtering problem
for (µt). Our framework relies on the optimal stopping
paradigm with the aim to approximate the exact optimal
solution, rather than seeking other (asymptotic) notions of
optimality. Given the complexity of our model, we focus
on a flexible numerical approximation method, extending
our earlier tools in [12], [13], [15]. This also allows us to
consider a generic Bayesian formulation without requiring
existence of low-dimensional sufficient statistics or making
other restrictive assumptions. Moreover, as our approach is
fully simulation-based, it can be easily adjusted depending
on model specification, requiring no intermediate analytical
computations.

As our main setup we consider centralized Bayesian detec-
tion with continuous-time observations modeled alternately
as a point process or an Îto diffusion. Use of continuous-
time is not only convenient analytically but is also more
faithful for asynchronous systems without a well-defined
time scale. Real-time information is bursty and consists
of discrete events that punctuate periods of inactivity. We
model such observations via a marked point process, linking
to the theory of Poisson disorder problems [18]. Because
the eventual numerical implementation is in discrete time,
our methods are in fact directly applicable (with obvious
modifications) also in discrete-time models.

A. Applications

Below we present three application area motivating the
models we consider.

Biosurveillance of emerging pathogens: The aim of
bio-surveillance is to monitor a range of prediagnostic and
diagnostic data for the purpose of enhancing the ability
of the public health infrastructure to detect, investigate,
and respond to disease outbreaks. An important case is
monitoring for emerging infectious diseases that may trigger
a new pandemic, such as the avian H5N1 virus. Currently,
H5N1 is primarily confined to birds and only rarely infects



humans, with very few known cases of human-to-human
transmission. As a result, despite its high mortality rate, the
basic reproductive ratio of the pathogen is low in humans,
preventing epidemics. However, each time a human is in-
fected, further virus adaptation may result, enabling direct
human-to-human transmission and triggering an epidemic
onset [3]. Letting (Yt) be the count of observed infections for
an endemic pathogen, and θ the (unknown) instant when the
disease goes epidemic we have a positive feedback between
(Yt) and hazard rate (µt) of θ.

Security intrusions: In counter-terrorism and other
security intrusion applications, θ is used to denote the start
of an attack by the adversary. In that context, it is clear that
the assumption of independence between observations and θ
is unlikely, since the enemy agent would also monitor the
situation and try to strategically select a good “opportunity
window” [17]. In particular, it might be expected that the
attack would occur after a period of relative “quiet” when
the monitor is lulled into complacency, inducing a negative
dependence between (Yt) and θ.

Quality control: In quality control applications [1], θ is
the instant the system goes out-of-control. A common reason
for break-down is accumulated damage, i.e. the previous
minor degradations, captured by (Yt), build up to a major
failure (e.g. engineering structure failure after a series of
small shocks, such as earthquakes over the years). Hence,
observed shocks cause a positive feedback with the hazard
rate of the change-point θ, and should be taken into account
by the detection algorithm.

The rest of the paper is organized as follows. Section II
sets up our stochastic model and formalizes the detection
objectives. Section III presents our Monte Carlo based solu-
tion method. Section IV discusses further extensions of the
approach which is illustrated in Section V.

II. STOCHASTIC MODEL
Fix a probability space (Ω,F ,P). Let (Yt)t∈R+

be the data
stream observed by the controller. The statistical properties
of the information received undergo a transition when the
signal is present. The instant of disruption, denoted θ, is
henceforth called a change-point. Crucially, θ is unobserved.
Define F = {Ft}t≥0 to be the right-continuous augmentation
of the natural filtration Ft = σ (Ys : 0 ≤ s ≤ t) of (Yt), as
well as the extended filtration Gt , Ft ∨ σ {θ} , t ≥ 0.

The dynamic system state is described by the disorder
indicator process Xt ∈ {0, 1} which encodes the present
state of the signal,

Xt := 1{θ≤t}. (1)

We view (Xt) as a point process with a single arrival date
θ. Denote by µt the hazard rate of θ. Formally, this means
that

Mt = 1{θ≤t} −
∫ t∧θ

0

µs ds

is a (P,F)-martingale and (Xt) admits the decomposition

dXt = µt(1−Xt) dt+ dMt.

In the special case where θ is a mixture of the point mass
at zero and an exponential Exp(λ) distribution, µt ≡ µ is
constant, making (Xt) a time-homogenous continuous-time
Markov chain.

Once the change-point occurs, no further disorders can
take place and we set µt = ∆, the ‘cemetery state’. The
state-space of µt is denoted as R := R+ ∪ {∆}.

A. Observations Model

A variety of formulations are possible for the dynamics
of observations (Yt). As our main example, we consider
monitoring of asynchronous “lumpy” events, whereby we
model (Yt) via a doubly stochastic Poisson process driven by
the signal. Precisely, we assume that (Yt) is a point process
with intensity Λ(Xt). In other words, we have that

dYt = 1{t≤θ}dN
0(t) + 1{t>θ}dN

1(t), (2)

where (N j(t)) are conditionally independent Poisson pro-
cesses with intensity Λ(j), j = 0, 1 (to be specified). The
arrivals of (Yt) are denoted as 0 = σ0 < . . . < σk < σk+1.

In Section IV-A below we consider the alternative case
where (Yt) is specified as an Îto diffusion.

B. Feedback Effect

As a first approach for linking the hazard rate (µt) of θ
and the observations (Yt), we consider a bivariate Hawkes
process specification [10]. Namely, (µt) has a shot-process
feedback effect from arrivals in (Yt),

µt = µ̄+ (µ0 − µ̄)e−βt +

∫ t

0

ae−β(t−s)dYs

= µ̄+ (µ0 − µ̄)e−βt +
∑
`:σ`≤t

ae−β(t−σ`), (3)

for some constants a, β, µ̄. Thus, the transition rate of (Xt)
increases by a after each arrival σk; this effect dissipates
exponentially at rate β. Hence, if a > 0 then the change-
point θ is likely to be “triggered” by a cluster of observed
events, creating a correlation between (Yt) and (Xt).

The model parameters are Ξ := (a, β, µ̄,Λ(0),Λ(1)), at
least some of which are likely to be unknown. We assume
a fully Bayesian specification with a given hyper-prior Ξ ∼
p(Ξ) on some domain Ξ ∈ DΞ.

C. Bayes Risk Performance Criterion

The controller aims to detect signal presence by raising the
alarm at decision time τ ≤ T , where T is a given horizon.
Since θ is not directly observed, we require that the decision
is based on available information, namely τ ∈ ST , where ST
denotes the set of all F-adapted stopping times bounded by
T . Given Bayesian priors, the basic objective is to achieve
quickest detection while maintaining a bound on false alarm
frequency. We assume that the decision criteria are based on
the detection delay (τ − θ)+, where a+ := max(a, 0), and
the probability of the false alarm {τ < θ}.



The Bayesian quickest detection problem is to compute

V (p0) := inf
τ∈ST

E
{

(τ − θ)+ + c1{τ<θ}|X0 ∼ p0

}
(4)

= inf
τ∈ST

E
{∫ τ

0

1{Xs 6=0}ds+ c1{Xτ=0}|X0 ∼ p0

}
.

The first term on the right-hand-side in (4) is the expected
detection delay (EDD), while the second term is the prob-
ability of a false alarm (PFA) given that alarm is raised at
τ . The parameter c is the tunable penalty for false alarms;
small c will induce aggressive detection, while c→∞ is the
case where false alarms are not tolerated.

If (Xt) was observed (i.e. F-measurable), then the optimal
detection rule would simply be τ = θ; the crux of the
problem is therefore to construct a good approximation to θ
using information flow (Ft) only. From a control perspective,
this means that to minimize Bayes risk requires now to solve
a partially observable optimal stopping problem. Indeed, the
costs in (4) are not measurable with respect to the decision
variable τ . Accordingly, the solution approach [18] is to first
perform filtering of the latent state (Xt) by computing the
posterior distribution

Π̃t := P {Xt = 1|Ft} . (5)

However, due to the interaction between (Yt) and (µt), (Π̃t)
is not Markov, presenting multiple challenges of using this
approach. We therefore consider the larger filtering problem
for the hazard rate (µt) and parameters Ξ,

Πt(A) := P {(µt,Ξ) ∈ A|Ft} , A ∈ B(R×DΞ). (6)

We may identify Πt as an element ofM(R×DΞ), the set of
all probability measures on R×DΞ. Thus, (Πt) is a diffuse-
measure-valued process, but trivially possesses the Markov
property. In other words, to gain the Markov property, one
must lift from the restricted filter (Π̃t) to the full filter (Πt).

In particular, the probability that the change-point already
took place is simply Πt(1∆) and the Bayesian performance
functional in (4) is equivalent to

J(τ ;π0) := Eπ0

{∫ τ

0

H1(Πs) ds+H2(Πτ )

}
, (7)

where H1(π) := π(1{∆}×DΞ
), H2(π) := cπ(1{R\∆}×DΞ

)
and Eπ0 {·} denotes expectation under the initial condition
p(µ0,Ξ|F0) ∼ π0.

A Bayesian optimal detection rule τ∗ is the optimizer in
(7) and can be viewed as the functional mapping histories to
decisions τ∗ : Ft → {stop, continue}. Since the enlarged
state variable is Markov, the detection rule is simplified to a
function of the current Πt. This point of view highlights the
key challenges in working with (7), namely the need to (i)
characterize and solve the evolution equations of the filter
process (Πt) and (ii) overcome the curse of dimensionality
associated with optimizing over the state space of Πt. In
fact, without further assumptions Πt is infinite-dimensional
making V a functional on the nonlocally compact space
M(R × DΞ). Thus, a complete Bayesian solution requires
consideration of non-Markov optimal stopping (if working

with (Π̃t)) or infinite-dimensional Markov optimal stopping
problems. The resulting complexity has earned this approach
the stigma of analytical and computational intractability.

D. Solution Outline

Because there are no finite sufficient statistics for the
measure-valued process (Πt), the key to its characterization
are stochastic filtering techniques [2], [24]. Namely, (Πt)
satisfies a variant of the Kushner-Stratonovich nonlinear
filtering equation. In general this equation is not analytically
tractable and requires a numerical approximation. An effi-
cient and flexible approach to computing Πt is via Sequential
Monte Carlo methods (SMC), also known as particle filters
[5]. The main mechanism of SMC consists of a mutation-
selection procedure applied to an interacting particle system.

In terms of the control step, since the state variable is Πt,
analytic representations, through, e.g. quasi-variational in-
equalities, of the resulting value function V (π) are difficult to
come by. Instead we recall the probabilistic characterization
of V through its dynamic programming equations. Precisely,
for any stopping time σ (in particular the first arrival time of
(Yt)) define the monotone operator J acting on a measurable
test function v : [0, T ]×M(R×DΞ)→ R via

J v(t, π) = inf
τ∈ST

Eπ
{∫ τ∧σ

t

H1(Πs) ds

+ 1{τ≤σ}H
2(Πτ ) + 1{τ>σ}v(σ,Πσ)

}
. (8)

Then using the Bellman optimality principle,
Lemma 2.1: V (π) is the largest fixed point of J smaller

than H2(π) and one can approximate V as

V = lim
n→∞

Vn, where Vn = J Vn−1, with V0 = H2.

Moreover, the optimal stopping rule is given by

τ∗ = inf{t : V (t,Πt) ≥ H2(Πt)} ∧ T, (9)

and can be approximated through τn = inf{t : Vn(t,Πt)) ≥
H2(Πt)} ∧ T .

The ensuing representation of the value function as the
Snell envelope corresponding to the reward functional J(τ ; ·)
in (7) allows to resolve the curse of dimensionality through
the use of Monte Carlo dynamic programming (MCDP)
methods [6], [12], [13], [15]. MCDP approximately solves
the dynamic programming equations of optimal stopping by
applying stochastic simulation/regression framework. This
allows a fully simulation-based solution of the Bayesian for-
mulation (4), seamlessly merging SMC inference and MCDP
for the optimization step. The resulting Monte Carlo algo-
rithm first uses particle filtering to obtain a high-dimensional
approximation (Π̂

(N)
t ) to the true (Πt) with arbitrarily small

errors as N → ∞, and then applies MCDP to solve the
optimal stopping problem for (Π̂

(N)
t ).

Remark 2.1: When a > 0, it follows that the posterior
likelihood of a change-point decreases on each inter-arrival
interval [σk, σk+1) and stopping is only optimal upon arrival
τ∗ ∈ {σk : k = 1, . . .}. While convenient for the controller,
this property is hard to exploit within the numerical solution.



Remark 2.2: If all the parameters Ξ of the model are
known, one can use Bayes rule to analytically evaluate the
posterior probability of the change-point. Indeed, condition-
ing on θ = s and observations (Yt), one can compute
the full trajectory (µs), s ≤ t, and therefore evaluate the
resulting likelihood p(Y[0,t)|µ[0,t)). Integrating out θ yields
the posterior probability of {µt = ∆} = {Xt = 1} up to an
evaluation of a 1-dim. integral.

III. NUMERICAL ALGORITHM
A. Particle Filtering

We utilize sequential Monte Carlo approach to approxi-
mate Πt ' Π̂

(N)
t , where the discrete measure Π̂

(N)
t consists

of N particles,

Π̂
(N)
t :=

1

W (t)

N∑
n=1

wn(t)δmn(t),ξn(·). (10)

Above wn(t) ∈ R+ are the particle weights, W (t) is a
normalizing constant, and mn(t), ξn are the particle versions
of µt and Ξ, respectively. Hence, any posterior probability
of an event A ⊆ R×DΞ is approximated via

P{(µt,Ξ) ∈ A|Ft} '
1

W (t)

∑
n:(mn(t),ξn)∈A

wn(t).

The SMC algorithm is now specified through the recursive
evolution of the particles (wn(t),mn(t), ξn)Nn=1, allowing
for a sequential (online) update of the particle filter as
new information is collected. This evolution is given by the
genetic mutation-selection steps. In general, the particles are
supposed to mimic µt, i.e. follow (3). The parameters ξn

are therefore static. Given mn
t , ξ

n it is trivial to back out
the dynamic disorder indicator xnt := 1{mn(t)=∆} and the
corresponding arrival intensity Λ(xnt ; ξn). The weights wn(t)
then correspond to the likelihood of observations (Ys)s≤t
given the particle history (mn(s))s≤t, or iteratively

wn(t) = wn(s) · exp

(
−
∫ t

s

Λ(xnu; ξn) du

)
·
∏

s≤σk≤t

Λ(xnσk).

(11)

As information is collected, most particles will diverge
from observations and their weights will collapse wn(t)→ 0.
To avoid the resulting particle degeneracy, the SMC approach
applies sequential resampling to multiply “good” particles,
and cull poor ones, ensuring particle diversity. Thus, we
introduce re-sampling instances Rk, k = 1, . . ., at which we
draw (with replacement) N times from the atomic measure
Π̂

(N)
Rk− according to the weights wn(Rk−), and then reset

the particle weights to wn(Rk) = 1. We use the Effective
Sample Size (ESS) measure of particle diversity, ESS(t) =
{∑N

n=1(wn(t))2}−1, to resample whenever ESS drops below
a threshold Rk = inf{t ≥ Rk−1 : ESS(t) ≤ ess}. If
the parameters Ξ are unknown, then further steps (such as
the Liu-West particle rejuvenation [11]) are needed to avoid
particle degeneracy in those dimensions. We also remark
that advanced resampling schemes (residual, stratified, etc.)
should be used to minimize Monte Carlo variance.

To simulate mn
t , we let

θnk := σk + I−1(En,k;mn
σk

), (12)

where I−1(y;m) is the inverse of the cumulative hazard
map t 7→

∫ t
0
µ̄+ e−βs(m− µ̄) ds and En,k are independent

Exp(1) random variables. Thus, θnk denotes the particle-
specific disorder date at the k-th stage. Note that to maintain
maximal particle diversity, we keep re-setting θnk as long as
mn
σk
6= ∆. Finally, for σk ≤ t < σk+1 we set

mn
t =

{
∆ if θnk < t;

µ̄n + e−β
n(t−σk)(mn

σk
− µ̄n) otherwise,

(13)

and mn
σk

= mn
σk− + an. Algorithm 1 below summarizes

particle filtering in the Hawkes model. For simplicity it
assumes that resampling takes place at arrival dates Rk = σk.

Algorithm 1 Particle Filtering in a Hawkes model of signal-
observation feedback

Sample mn ∼ π, ξn ∼ p(Ξ) n = 1, . . . , N
Set wn(0)← 1, n = 1, . . . , N
for k = 1, . . . do

for each particle n = 1, . . . , N do
Compute (xnt ) on the interval t ∈ (σk, σk+1]
Calculate weights wn(σk+1) using (11)

end for
if ESS(σk+1) < ess then

Re-sample n′ ∝ wn(σk+1) for n′ = 1, . . . , N

Update mn
σk+1

← m
(n′)
σk+1

Re-set weights wn(σk+1)← 1
end if

end for

B. Monte Carlo Dynamic Programming
Equipped with the filter of (µt), Bayesian sequential

detection reduces to solving the optimal stopping problem (7)
with the Markovian state variable Πt. Since (Πt) is measure-
valued, instead of computationally intractable analytic ap-
proaches we use a simulation-based method. Recall that for
a discrete-time problem,

V ∆(0, π) = inf
τ∈S∆

T

Eπ

{
τ−1∑
s=0

H1(Πs) +H2(Πτ )

}
where S∆

T = {τ ∈ S : τ ∈ {0,∆, 2∆, . . . , (T/∆)∆}}, Bell-
man’s optimality principle implies that

V ∆(t,Πt) = E
{τ∗(t)−1∑

s=t

H1(Πs)∆t+H2(Πτ∗(t))
∣∣Ft};

τ∗(t) = t1{St} + τ∗(t+ ∆t)1{Sct}, (14)

where τ∗ = τ∗,∆(t) is the optimal stopping time conditioned
on not stopping so far and Sct is the complement of the set

St :=
{
H2(Πt) < H1(Πt)∆t

+ E
{
V ∆(t+ ∆t,Πt+∆t)| Ft

}}
. (15)



By the Markov property, the conditional expectation
E
{
V ∆(t+ ∆t,Πt+∆t)|Ft

}
=: Ê(t; Πt) is a function of

the measure-valued Πt for some functional Ê : [0, T ] ×
M(R × DΞ) → R. The MCDP method first replaces
V (t+ ∆t,Πt+∆t) in the last term of (15) with an empirical
pathwise continuation value vt+∆t (computed according
to (14)). It then implements (15) by replacing the condi-
tional expectation operator E[·|Ft] (characterized as the L2-
minimizer) with an L2-projection onto the span(Bi(Πt) :
i = 1, . . . , r),

E
{
V ∆(t+ ∆t,Πt+∆t)|Ft

}
'

r∑
i=1

αi(t)Bi(Πt), (16)

where (Bi(π))ri=1 are the basis functions and αi(t) the
corresponding regression coefficients. This is implemented
through a cross-sectional regression of a Monte Carlo col-
lection (vmt+∆t)

M
m=1 to find (αi). Comparing the prediction∑

i α
i(t)Bi(Πt) and the immediate payoff H2(Πt) we then

construct the approximate stopping region St for (15).
Finally, since we do not have access to (Πt), we instead

work with the approximate filter Π̂(N). Thus, we simulate
M realizations (Y

(m)
t ) of (Yt) (along with the “shadow”

simulations of (µ
(m)
t )), and generate (Π̂

(N),m
t ) along each

Monte Carlo path using the particle filter above. Simulation
of the Hawkes process (Y

(m)
t , µ

(m)
t ) is done using the

Poisson thinning algorithm of [10] which is similar to (12),
except we also simultaneously generate the event times σk.
We then approximate (i) Bi(Πm

t ) ' Bi(Π̂
(N),m
t ) and using

backward recursion implement (15) by (ii) regressing the
empirical (vmt+∆t) against the simulated {Bi(Π(N),m

t )}Mm=1

to (iii) obtain the empirical regression coefficients from the
simulation of size M , α(M),·(t), and the approximate value
function V ∆(0, π;M,N, r,∆t), see [13]. General theory
[12] implies that V ∆(0, π;M,N, r,∆t) → V as r → ∞,
N →∞, M →∞, ∆t→ 0.

The Bayesian detection rule is a map between Πt and
the stopping decision. This suggests that to obtain good
tests, it is important first and foremost to identify the key
features in Πt. In the MCDP method, this translates into
appropriately parametrizing candidate rules in terms of the
basis functions. For example, the posterior probability of a
disorder, Πt(1{∆}) drives the immediate payoff H2 and is
certainly a relevant quantity. If we therefore take B1(t, π) =
π({Xt = 1}), and r = 1 the resulting detection test consists
of declaring alarms based solely on P{θ ≤ t|Ft}. This
cannot be optimal, since it would imply ignoring all other
information in (Πt), but provides a good starting point.
Such a procedure can then be iteratively used to pick the
basis functions Bi while employing natural stopping rules
and remaining faithful to the true non-Markovian system
dynamics. For instance, knowing the posterior likelihood that
µt is “large” might provide additional insight about whether
the change-point is likely to have occurred or not.

IV. EXTENSIONS
Our framework of applying stochastic filtering and optimal

stopping techniques on quickest detection problems is highly

flexible and can handle a variety of modified models. Below
we briefly discuss several potential generalizations.

A. Diffusion Observations

In applications where the sensors collect high-frequency
information, a model based on observations under white
noise may be more appropriate. The resulting diffusion-based
model of quickest detection (see e.g. [18]) takes (Yt) to be
a Brownian motion with drift driven by (Xt). To relate (Yt)
and the X-hazard rate (µt) we assume that the latter is also
a diffusion, correlated with (Yt). For simplicity, we assume
constant volatilities of the background noises,

dYt = Λ(Xt) dt+ σ dWt; (17)
dµt = A(µt) dt+ b dZt, (18)

where the Wiener processes (Wt) and (Zt) have correlation
E {ZtWs} = ρ(t∧s). In a typical example, (Yt) is drift-less
Λ(0) = 0 before the change-point, and acquires positive drift
Λ(1) > 0 thereafter. Classical techniques [2, Ch 3] imply that
in the case of (17) the filter (Πt) satisfies the Zakai equation
of nonlinear filtering. A corresponding particle filter can then
be obtained as in our previous work [12]; no changes are
needed in the MCDP step.

B. Extended Point Process Model

In (3), all the noise in the hazard rate (µt) came from the
observations. We can consider a more general setup where
(µt) possesses its own stochastic sources. Two possibilities
are to model (µt) as a jump-diffusion with jump times com-
ing from (Yt), or as a general shot-noise process with arrival
times (sk). In the latter case, some of the sk’s correspond to
observed arrivals σ` and some are unobserved, resulting in
a censored model. Efficient simulation and filtering of such
models was recently studied in [23], [8], [9].

V. NUMERICAL EXAMPLE

We take P(X0 = 0) = 1 and known parameters β =
4, µ̄ = 0.2,Λ(0) = 5. We assume that the feedback strength
a and the post-disorder intensity are unknown and have
the joint log-normal prior E{Λ(1)} = 10, V ar(Λ(1)) =
100(e0.01−1), E{a} = 0.05, V ar(a) = 0.052(e0.04−1) with
correlation ρ = 0.5. Thus, we assume that stronger feedback
effects are more likely to trigger more severe disorders.
Figure 1 shows a sample path of the resulting particle
filter (Π̂

(N)
t ). From our numerical experiments, N = 2000

particles produces a good approximation to the true change-
point probabilities Πt; each path of (Π̂

(2000)
t )t∈[0,8] takes less

than half a second to generate on a desktop.
We proceed to study the stopping rule for the Bayesian

risk minimization problem. We use ∆t = 0.02, T = 8, M =
32, 000 and N = 2000, with the regression bases (r = 4)

B1(π) = P{θ ≤ t|Ft}, B2(π) = E{µt|Ft},
B3(π) = P{θ ≤ t|Ft}2 B4(π) = E{µt|Ft} · P{θ ≤ t|Ft}.
With these parameters, E{θ} ' 3.88 and P{θ < T} ' 0.875,
so the horizon constraint is not negligible. Table I presents
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Fig. 1. Sample path of the observations (Yt) (middle) and corresponding
change-point intensity (µt) (top). The change-point θ is indicated with the
vertical line. We also show the resulting posterior probability P{θ ≤ t|Ft}
computed using (Π̂

(N)
t ) with N = 2000 (bottom). True parameters are

Λ(1) = 10, a = 0.05.

TABLE I
SOLUTION OF THE BAYESIAN RISK MINIMIZATION PROBLEM (4) FOR A

RANGE OF FALSE ALARM COSTS c.

c V (0) E0{τ∗} PFA{τ∗<T} EDD
5 1.96 4.12 0.135 1.00
10 2.85 4.57 0.069 1.30
20 4.36 4.97 0.037 1.63
50 8.42 5.41 0.011 2.04

some summary results as we vary the cost of false alarms c.
We recall that the total Bayes risk can be decomposed into
the probability of false alarm PFA and expected detection
delay EDD,

V (0) = E0{(τ∗ − θ)+}+ cP0{τ∗ ≤ θ} =: EDD + c · PFA.

As expected, higher c reduces PFA and increases EDD, as
well as the average time until first alarm. For example for c =
10, the PFA up to T , PFA{τ∗<T} := P0{τ∗ < θ|τ∗ < T},
is about 6.9% and the average detection delay is 1.30, while
for stronger penalty c = 20 the probability of false alarm
drops to 3.7% at the cost of increasing the detection delay to
1.63. Intuitively, the decision maker stops once the posterior
probability of a change-point is “high enough”. For example,
for c = 10, the threshold is around P{θ ≤ t|Ft} ≥ 0.91—
0.95, with the precise rule depending on the posterior mean
of µt (stop sooner if µt is large, anticipating an imminent
change-point which makes waiting costlier).

VI. CONCLUSION

Above we have developed a stochastic model for quickest
detection explicitly accounting for changepoint-observations
interaction. The key to our formulation is a Bayesian point of
view which translates change-point detection into a nonlinear
filtering step for the hazard rate of the change-point followed
by an optimal stopping step. This approach allows a flexible

specification of the effect of observations on the change-point
which can be tailored to a variety of applications.
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