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Abstract We study the problem of optimally coordinating multiple fixed-wing
UAVs to perform vision-based target tracking, which entails that the UAVs are
tasked with gathering the best joint vision-based measurements of an unpre-
dictable ground target. We utilize an analytic expression for the error covariance
associated with the fused measurements of the target’s position, and we employ
stochastic fourth-order models for all vehicles, thereby incorporating a high degree
of realism into the problem formulation. While dynamic programming can generate
an optimal control policy that minimizes the expected value of the fused geolo-
cation error covariance over time, it is accompanied by significant computational
challenges due to the curse of dimensionality. In order to circumvent this challenge,
we present a novel policy generation technique that combines simulation-based pol-
icy iteration with a robust regression scheme. The resulting control policy offers
a significant advantage over alternative approaches and shows that the optimal
control strategy involves coordinating the UAVs’ distances to the target rather
than their viewing angles, which had been a common practice in target tracking.

Keywords target tracking; unmanned aerial vehicle; autonomous vehicle;
regression Monte Carlo; motion planning; probabilistic planning

1 Introduction

Small unmanned aerial vehicles (UAVs) are relatively inexpensive mobile sensing
platforms capable of reliably and autonomously performing numerous tasks, such
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as mapping, search and rescue, surveillance and tracking, and real-time monitoring.
One problem of particular interest is that of using small, fixed-wing UAVs to per-
form vision-based target tracking, which entails that one or more camera-equipped
UAVs is responsible for autonomously tracking a moving ground target.

In vision-based target tracking, image processing software determines the cen-
troid pixel coordinates of a target moving in the image frame. Given these pixel
coordinates, the intrinsic and extrinsic camera parameters, and the terrain data,
one can estimate the three-dimensional location of the target in inertial coordinates
and compute the associated error covariance. This is the process of geolocation for
video cameras [1]. The geolocation error is highly sensitive to the relative position
of a UAV with respect to the target. When a UAV is far from the target, rela-
tive to its height above the target, the associated error covariance is significantly
elongated in the viewing direction. The smallest geolocation error comes when
the UAV is directly above the target, in which case the associated covariance is
circular. While a UAV would ideally hover directly above the target to minimize
the error, the relative dynamics between a UAV and target typically preclude this
viewing position from being held over a period of time.

To mitigate the effects of a single UAV’s inability to maintain close proximity
to the target, one can employ multiple UAVs to gather the best joint measure-
ments. In this scenario, the objective is to minimize the fused geolocation error
covariance of the target position estimate obtained by fusing the individual geolo-
cation measurements. Thus, in this work, we seek optimally coordinated behavior
between two UAVs aimed at improving the estimate of the target state.

The fused geolocation error is small when at least one UAV is close to the target
and only slightly less when both aircraft are directly above the target. When both
UAVs are far from the target relative to their altitudes, the fused geolocation
error is greatly reduced when the UAVs have orthogonal viewing angles, though
this error is still significantly greater than when at least one UAV is on top of
the target. Of course, these configurations are static, yet in a realistic scenario,
the target motion is unpredictable and the UAVs have limited control effort and
experience stochasticity in their dynamics.

The purpose of this work is thus to present and study an effective solution
to the problem of optimally coordinating two UAVs to track a moving ground
target under fairly realistic conditions. More specifically, the objective for the
camera-equipped UAVs is to gather the best joint vision-based measurements of
a randomly moving ground target whilst themselves being subject to limited con-
trol effort and experiencing stochasticity in their dynamics. The class of UAVs
under consideration are hand or catapult launched fixed-wing aircraft that fly at
a constant altitude and have an autopilot that regulates roll angle, airspeed, and
altitude to the desired setpoints via internal feedback loops. Furthermore, these
underactuated aircraft are assumed to fly at a constant airspeed since the range
of permissible airspeeds for such small aircraft may be very limited, as noted in [2]
and §5.1 of [3]. In addition, frequent changes in airspeed may be either undesirable
for fuel economy or simply unattainable. The roll angle setpoint is hence the sole
control input that affects the horizontal plant dynamics. The target is modeled as
a nonholonomic vehicle that randomly turns and accelerates.

As determining the optimal control policy (feedback law) is a challenging prob-
lem in the area of stochastic optimal control, we now take note of the numerous
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solutions that have been proposed over the past decade for similar problems in the
area of target tracking.

1.1 Related Work

Much research has proposed coordinated target tracking controllers in a deter-
ministic setting without directly optimizing mission performance with respect to a
desired objective function. For two UAVs, a generally accepted practice is to have
the UAVs orbit the target at a nominal standoff distance (to remain outside a crit-
ical threat range) and maintain an angular separation of 90˝. The 90˝ separation
angle minimizes the joint / fused geolocation (target localization) measurement
error for the given standoff distance, as the individual measurement error ellipses
are orthogonal [4]. These principles give rise to what is henceforth referred to
as cooperative (or coordinated) standoff tracking, which constitutes the majority
of the work in the general area of coordinated target tracking. When more than
two UAVs are considered, the goal generally becomes having the group achieve a
uniform angular separation on a circle centered at the target.

Standoff tracking has been a longstanding goal in the general area of target
tracking and has been addressed using numerous approaches that include “Good
Helmsman” steering [5], Lyapunov guidance vector fields [6], nonlinear model pre-
dictive control [7], nonlinear feedback [8], and methods combining vector field
guidance with adaptive control [9,10]. Since multiple fixed-speed aircraft cannot
maintain a uniform angular spread at a fixed distance from a constant-velocity
target, works such as [3] and [11] have explored the notion of spreading agents
uniformly in time along a periodic trajectory at a fixed distance from the moving
target.

A number of approaches have employed stochastic optimal control to mitigate
the effects of stochastic target motion while also respecting a maximum turn-rate
/ bank angle. In [12], Anderson and Milutinović studied the problem of optimal
standoff tracking in the continuous time setting and model the target as a Brow-
nian particle and the UAV as a deterministic Dubins vehicle. By minimizing the
expected cost of the total squared distance error discounted over an infinite hori-
zon, the authors generate an optimal bang-bang turn-rate controller that is highly
robust to unpredictable target motion. In [13], the authors studied the problem of
having a single UAV optimally perform vision-based target tracking with a limited
sensing region, wherein the cost objective was a function of the desired viewing
geometry. A comparison was made between a game theoretic approach (address-
ing evasive target motion) and a stochastic optimal control approach (addressing
random target motion) and showed that the latter approach performed better
in actual field tests. Hence, in the present work, we use a refined version of the
stochastic kinematic UAV model from [13] and adopt a similar stochastic target
model.

Others have employed optimal control to study optimal UAV coordination
when the objective is to improve target state estimation. Miller et al. pose the prob-
lem of multiple UAVs tracking multiple targets as a partially observable Markov
decision process (POMDP) in [14] and present a new approximate solution, as
nontrivial POMDP problems are typically intractable to solve exactly [15]. In [16],
Stachura et al. studied the problem of two variable-airspeed UAVs with bearing-
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only sensors tracking a stochastic ground target in the presence of packet losses
in the communication with the base station, where target state estimation takes
place. The solution involved an online receding horizon controller that maximized
the expected information (inverse covariance) of the target state estimate in an
extended information filter over a short planning horizon, showing that one UAV
will act as a relay to the base station when the target is far from the base. In [17],
Ding et al. studied the problem of optimally coordinating two camera-equipped
Dubins vehicles with bang-off-bang turn-rate control to maximize the geolocation
information of a stochastic ground target over a short planning horizon. The re-
sults showed that a 90˝ separation in the viewing angle was essential in the case
of terrestrial pursuit vehicles and less pronounced with airborne pursuit vehicles.

We emphasize the fact that the preceding optimal control approaches illustrate
a trend among optimization-based coordination strategies. Namely, shorter plan-
ning horizons are often considered to reduce the computational complexity of the
dynamic optimization. While this is justified from a pragmatic standpoint, short
horizons are not adequate for the cost function considered here. In particular, since
the main feature of the cost function is that it (in effect) penalizes the minimum
UAV distance to the target, a short planning horizon inhibits the UAVs from re-
alizing the long term benefits of distance coordination, i.e., keeping their peak
distances from the target out of phase. Moreover, if the target is traveling con-
siderably slower than the UAVs, the aircraft must perform loops to remain close
to it and must realize the long term benefit of doing these loops in a coordinated
fashion.

In [18], however, the authors optimized the coordination of two UAVs over
long planning horizons of at least one minute by minimizing the fused geoloca-
tion error covariance, thereby gathering the best joint vision-based measurements
of the target. The results showed that coordination of the distances to target is
more effective for achieving the said goal than the traditional practice of solely
coordinating viewing angles, thus motivating the use of optimization-based con-
trol strategies with longer planning horizons. These studies were conducted in a
deterministic setting for UAVs that used bang-off-bang turn-rate control to track
a constant-velocity target. Lastly, we note that a number of works including [19]
and [20] have proposed using sinusoidal turn-rate control inputs that approximate
the optimal behavior of [18] at higher speeds; however, our tests indicate that the
proposed oscillatory control strategies appear to be non-robust to stochastic target
motion while roll dynamics are not considered.

In all of the preceding works, at least one or more assumptions are made that
impose severe practical limitations. Namely, the works mentioned thus far assume
at least one of the following:

1. Coordinated circular trajectories are optimal, namely those trajectories result-
ing from standoff tracking.

2. Input dynamics are first order and roll dynamics have been ignored.
3. The UAV airspeed can be changed quickly and reliably over a significant range
4. Target motion is predictable
5. Short/greedy planning horizons are adequate for optimal tracking

The present paper removes all of these assumptions to promote a more practical
solution that yields optimal coordination under more realistic conditions, namely
higher order stochastic dynamics with explicit input constraints.
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1.2 Contributions

To remedy the aforementioned simplifications / assumptions, we formulate a stochas-
tic optimal control problem whose objective is for two fixed-wing UAVs to gather
the best joint vision-based measurements of a randomly moving ground target
over a sufficiently long planning horizon. The cost function utilizes an analytical
expression for the geolocation error covariance while fourth order stochastic kine-
matic models are utilized for all vehicles to describe realistic vehicle dynamics.
More specifically, the stochasticity in the ground vehicle model encompasses the
unpredictable nature of the target motion while that of the UAV model addresses
environmental disturbances, e.g., wind gusts, as well as unmodeled dynamics. Most
importantly, this aircraft model has produced successful field test results in related
target tracking applications [13,21]. Lastly, an upper limit is imposed on the max-
imum absolute roll-angle setpoint, which is the sole control input for each aircraft.

To determine the optimal control policy, one must solve a moderate dimen-
sional stochastic optimal control problem for which grid-based approximations
to the dynamic programming value function are infeasible. Hence, we present a
regression-based dynamic programming technique that has been adapted from
the simulation-based policy iteration technique known as regression Monte Carlo
(RMC). More specifically, the original RMC algorithm has been modified to be-
come a policy generation technique so as to remove the need for an initial policy
that is close to the optimal. In addition, to address the high dimensionality of the
system dynamics, we use a partitioned robust regression scheme (based on work in
[22]) that is both fast and scalable with the number of Monte Carlo simulations.
Since the overall method generates an approximately optimal control policy offline,
this controller can be readily implemented in realtime. While the original RMC
algorithm has been successfully applied to stochastic control problems in finance
and epidemic management, here we demonstrate its utility for high-dimensional
autonomous vehicle applications.

Lastly, we provide a thorough demonstration of the nature and performance of
the resulting control policy. First, we show the benefits of the proposed approach
over alternative methods, including an uncoordinated control strategy in which
the multiple UAVs solve independent optimizations and (non-optimal) stand-off
tracking. Second, we show that while viewing-angle coordination is certainly facil-
itated by the optimal policy, the more pronounced behavioral characteristic of the
optimal strategy is the coordination of distances to the target. Overall, we show
that optimization-based control techniques can produce results that differ from
and significantly outperform traditional techniques relying on heuristics.

1.3 Paper Outline

The remainder of the paper is organized as follows. Section 2 describes the main
components of the stochastic optimal control problem, namely the stochastic kine-
matic models for the vehicles, the fused geolocation error covariance, and the
overall state space. Section 3 firstly provides an overview of the basic dynamic
programming solution to the problem and secondly details the more sophisticated
regression Monte Carlo algorithm. The remainder of the section is devoted to de-
scribing the partitioned robust regression tool. Section 4 discusses some of the pa-
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rameters and modifications to the algorithm that are specific to the present target
tracking application. Section 5 opens with a description of the overall simulation
setup for a realistic scenario. The remainder of the section provides a comparison
with alternative methods to establish the benefit of the proposed approach; the
section concludes with an analysis of the coordination behavior. Section 6 provides
conclusions of the overall work and discusses opportunities for future research.

2 Problem Formulation

Consider a group of two UAVs tasked with autonomously tracking an unpre-
dictable moving target vehicle using gimbaled video sensors. The UAVs fly at a
constant altitude and fixed nominal airspeed yet experience stochasticity in their
dynamics. The target is a nonholonomic ground vehicle that moves on the ground
and exhibits stochasticity in both its turning and acceleration. The main objective
is to optimize the coordination of the UAVs to gather the best joint vision-based
measurements of the target. Since all vehicles experience stochasticity in their
dynamics, the dynamic optimization is inherently a stochastic optimal control
problem, whose key components are a description of the stochastic evolution of
the states and the cost associated with each state. Accordingly, we first describe
the stochastic kinematic models for the UAVs and target and then discuss the
video measurement model and the associated geolocation error covariance, which
will constitute the cost.

2.1 Overview of Stochastic Dynamics

The UAV and target states are assumed to evolve stochastically according to
discrete-time Markov Decision Processes. Accordingly, the probability of transi-
tioning from UAV j’s state ξj at the current time k to the next state ξ1j at time
k ` 1 under control action uj is given by the controlled state transition probabil-
ity function papξ

1
j | ξj , ujq. For simplicity, we assume that the UAVs have identical

stochastic kinematics, though this can be easily generalized to a heterogenous
team. Likewise, the probability of transitioning from the current target state η
to the next target state η1 is given by the state transition probability function
pgpη

1
|ηq.

Rather than deriving explicit formulas for these state transition probabilities,
which are not needed for our approach, we use the agents’ kinematics to draw

Monte Carlo samples ξ̃
pi,u1q

1 , ξ̃
pi,u2q

2 , and η̃piq, i P t1, 2, . . . , Npu, from the condi-
tional probability density functions of UAV 1, UAV 2, and the target, respectively.
These Monte Carlo samples provide an empirical characterization of the stochastic
dynamics of the overall system’s state z, which includes UAV states relative to
those of the target and evolves according to a controlled state transition probabil-
ity function ppz1 |z,uq. The ability to sample this state transition probability will
suffice to effectively approximate the dynamic programming solution.
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2.2 UAV Dynamics

In practice, the UAVs are subject to environmental disturbances, such as wind
gusts, that introduce stochasticity into the dynamics. Although a real UAV’s
kinematics are most accurately described by a 6 degree-of-freedom (DoF) aircraft
model, we use a 4-state stochastic model of the kinematics, in which stochasticity
accounts for the effects of both unmodeled dynamics (arising from the reduced 4th

order model) and environmental disturbances. The model was successfully em-
ployed in field tests both for a single UAV performing vision-based target tracking
with sensing limitations in [13] and for flocking with multiple UAVs in [21].

While the majority of the work on target tracking uses continuous-time motion
models, this work treats the optimization in discrete time. Thus, each UAV is
initially modeled by fourth-order continuous-time dynamics, and then a Ts-second
zero-order hold (ZOH) is applied to each UAV’s control input to arrive at the
discrete-time dynamics for the aircraft.

Each UAV is assumed to have an autopilot that regulates roll angle, airspeed,
and altitude to the desired setpoints via internal feedback loops. In our model,
UAV j flies at a fixed airspeed sj and at a constant altitude hj above the ground.
UAV j’s planar position pxj , yjq P R2 and heading ψj P S1 are measured in a
local East-North-Up (ENU) earth coordinate frame while its roll angle φj P S1 is
measured in a local North-East-Down (NED) body frame. In the latter coordinate
frame, the x-axis points out of the nose, the y-axis points out of the right wing,
and the z-axis completes the right-handed coordinate frame. As in [13] and [21],
the roll/bank angle of the aircraft is the only controllable state that affects the
horizontal plant dynamics. The roll angle is controlled through setpoint control,
which entails that a given control policy determines the desired roll angle uj that
is provided to the autopilot’s low-level control loops.

The development of the stochastic discrete-time kinematic model for the UAV
begins with the deterministic continuous-time model:

d

dt

¨

˚

˚

˝

x

y

ψ

φ

˛

‹

‹

‚

“

¨

˚

˚

˝

s cosψ
s sinψ

´pαg{sq tanφ
fpφ, uq

˛

‹

‹

‚

, (1)

where αg denotes the acceleration due to gravity and the subscript j denoting
the UAV index has been omitted, as the same dynamical model is used for both
UAVs. The quantity fpφ, uq denotes the roll dynamics, and could be, for example,
fpφ, uq “ ´αφpφ ´ uq with αφ ą 0. In this case, 1{αφ ą 0 can be regarded as
the time constant corresponding to the autopilot control loop that regulates the
actual roll angle φ to the current roll-angle setpoint u. However, we actually use
a much more detailed model for the roll dynamics wherein we apply a Ts second
zero-order hold (ZOH) on the roll-angle setpoint u and sample roll trajectories
from a high-fidelity flight simulator that utilizes an aircraft model with 6 degrees
of freedom. In this sampling process, we assume u P C, where

C :“ t0,˘∆,˘2∆u ,

and that the changes in u from one ZOH period to the next belong to the set
t0,˘∆u. Thus, ∆ ą 0 is in essence the maximum allowable change in the roll-angle
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Fig. 1 Monte Carlo simulations to sample roll trajectories. Once every Ts “ 2 seconds the roll-
angle setpoint is randomly changed to upkTsq P UprpkTsqq, where each element of UprpkTsqq
occurs with equal probability and ∆ “ 15˝ is the maximum allowable change in roll-angle
setpoints.

setpoint from one ZOH period to the next. In order to regulate the maximum
allowable change in the setpoint, we must keep track of the previous setpoint
uk´1 “ upkTs ´ Tsq, where k P Zě0. To this end, we note that an autopilot with
a properly tuned controller for roll will approximately achieve the setpoint at the
end of the ZOH period, i.e., @k P Zě0, φpkTs`Tsq « upkTsq. Moreover, we assume
this is the case and define the discretized roll angle at time k as

rk :“ arg min
cPC

|c´ φk|,

and assume rk`1 “ uk, which means rk “ uk´1. Thus, our requirements that uk P
C and puk ´ uk´1q “ puk ´ rkq P t0,˘∆u are summarized by requiring uk P Uprkq,
where for c P C

Upcq :“ tc, c˘∆u X C.

We sample roll trajectories from a high fidelity flight simulator per the de-
scription of Figure 1 and generate a collection Φpr, uq of Np roll-angle trajectories
φipτ, r, uq, where i P t1, 2, . . . , Npu and τ P r0, Tss, for each combination of r P C
and u P Uprq. Figure 2 illustrates a typical collection of roll-angle trajectories for
particular values of r and u. One should observe that all of the roll-angle trajec-
tories in the example approximately achieve the setpoint in accordance with the
assumption that rk`1 “ uk. In like manner, all of the roll trajectories used in the
model have this property. Since r well approximates the roll angle φ at discrete
time instances t “ kTs seconds for all k P Zě0, we define the state of a UAV as
ξ :“ px, y, ψ, rq P R4.

To make the aircraft model more realistic we also introduce stochasticity into
the airspeed s, which is drawn from a symmetric triangle distribution (wherein
the mode is equidistant from the support bounds) that is centered at a nominal
value of µs and has support over the interval rµs ´ σs

?
6, µs ` σs

?
6s, where σs

denotes the standard deviation of the distribution. Also, the airspeed s in (1) is
assumed to be constant over each ZOH period and independent across different
ZOH periods.
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Fig. 2 One hundred roll-angle trajectories over a Ts “ 2 second ZOH period resulting from
an increase of ∆ “ 15˝ from the previous roll-angle setpoint of uk´1 “ rk “ ´15˝. Moreover,
the current setpoint is uk “ 0˝.

Fig. 3 Sample trajectories generated from the stochastic kinematic model for the UAV with
s distributed according to a triangle distribution with mean µs “ 10 [m/s] and standard
deviation σs “ 4{5 [m/s]. Also, Ts “ 2 seconds, and ∆ “ 15˝. The initial UAV state is
identically zero. For each u P Up0˝q “ t0˝,˘15˝u, 1, 000 sample trajectories were generated.
For each command, the vertical spread in final UAV positions is due to sampling different roll
trajectories while the horizontal spread results from stochastic airspeed.

This modeling technique allows us to generate samples ξ̃pi,uq for the next state
ξ1, given the current state ξ and the roll setpoint u. Specifically, the first three
components of a sample ξ̃pi,uq are the implicit solution to

d

dτ

¨

˝

x

y

ψ

˛

‚“

¨

˚

˝

si cosψ
si sinψ

´
αg
si

tan
`

φipτ, r, uq
˘

˛

‹

‚

at the end of the Ts-second ZOH period with si drawn from the symmetric triangle
distribution with mean µs and standard deviation σs and φipτ, r, uq randomly se-
lected from the set Φpr, uq, where each element occurs with equal probability. The
fourth component of ξ̃pi,uq is deterministic and is simply r̃pi,uq “ u. The samples of
the UAV’s position and heading thus have two sources of randomness: stochastic-
ity in the roll-angle dynamics captured by the collection of roll-angle trajectories
Φpr, uq and stochasticity in the airspeed. Figure 3 illustrates the stochastic UAV
model.
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2.3 Target Dynamics

As with the UAV state, the target state η is assumed to evolve stochastically
according to a Markov Decision Process, where the state transition probability
function pgpη

1
|ηq is implicitly defined by the following construction for the target

motion.

The target is assumed to be a nonholonomic vehicle that travels in the ground
plane and has the ability to turn and accelerate. Its state comprises its planar
position pxg, ygq P R2, heading ψg P S1, and speed v P Rě0 and is hence defined as
η :“ pxg, yg, ψg, vq. The target’s dynamics are those of a planar kinematic unicycle,
i.e.,

9η “
d

dt

¨

˚

˚

˝

xg
yg
ψg
v

˛

‹

‹

‚

“

¨

˚

˚

˝

v cosψg
v sinψg

ω

a

˛

‹

‹

‚

, (2)

where ω and a are the turn-rate and acceleration control inputs, respectively.

To model the behavior of an operator driving the ground vehicle safely and
casually, yet unpredictably, the target’s control inputs ω and a are drawn from
continuous probability density functions. These inputs are assumed to be held
constant over a Ts-second ZOH period synchronized with that of the UAVs and
independent across different sampling intervals.

The target’s acceleration a is drawn from a symmetric triangle distribution with
support over the interval rmaxtpv´vq{Ts,´αu,mintpv̄´vq{Ts, αus, for given positive
scalars α, v̄, and v. The support for the distribution guarantees that the absolute
value of the acceleration does not exceed α and that the velocity v1 “ v ` aTs at
the end of the sampling period remains in the interval rv, v̄s.

The distribution for the target’s turn rate ω is symmetric triangular with sup-
port in the interval r´ω̄, ω̄s, where ω̄ ą 0 is given by ω̄ :“ mintω̄%, ω̄au. The support
for the distribution guarantees that the target respects both the upper turn rate
limit ω̄% “ mintv{%, pv`aTsq{%u set by the target vehicle’s minimum turning radius
% ą 0 as well as a given maximum allowable turn rate ω̄a ą 0. The quantity ω̄a is
typically less than ω̄% at moderate to high speeds and is used to further govern the
target’s turning behavior beyond the inherent minimum turning-radius limitation.

The discrete-time stochastic kinematic model is the solution of (2) at the end of
the Ts-second ZOH period with the acceleration and turn rate having been drawn
from their respective triangle distributions at the start of the ZOH period. This
kinematic model is illustrated in Figure 4 with the parameters in Table 1.

Table 1 Stochastic target motion parameters

Parameter: α v v̄ % ω̄a Ts
Value: 0.5 4.5 12.5 7 0.2 2

Units: m/s2 m/s m/s m rad./s s
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Fig. 4 Sample positions generated from the stochastic target motion model. The two initial
target states depicted with different colors correspond to identical initial positions at the origin,
but two distinct initial speeds of 6 and 12 [m/s]. For each initial condition, 1, 000 samples are
generated.

2.4 Target-Centric State Space

We consider a target-centric state space Z that has dimension n “ 9. For j P t1, 2u,
we denote by rj the relative position of UAV j, which is given by

rj :“

„

cosψg sinψg
´ sinψg cosψg

 „

xj ´ xg
yj ´ yg



. (3)

Also, we define the UAV j’s pose (position and heading) relative to the target as
pj :“ prj , ψr,jq P R2

ˆ r´π, πq, where ψr,j “ atan2psinpψj ´ ψgq, cospψj ´ ψgqq and
atan2 is the four-quadrant inverse tangent function. The state vector z P Z Ă R9

is thus given by

z :“ pp1, r1, p2, r2, vq,

where rj and v denote UAV j’s discretized roll-angle and the target’s speed, respec-
tively. The overall state transition probability ppz1 |z,uq, where u P Upr1qˆUpr2q,
is given implicitly by combining the stochastic kinematic models for the vehicles
with the preceding description of the components of the states in Z.

2.5 Geolocation Error Covariance

Each UAV has a video sensor that makes image-plane measurements of the tar-
get. The dominant source of geolocation error stems from the error in the sensor
attitude matrix that relates the line-of-sight vector in the sensor frame (centered
at the UAV position) to that in the topographic coordinate frame. This error is
amplified on the ground by UAV j’s three dimensional distance dj to the target.
Hence, UAV j’s individual error covariance, denoted by Pj P R2ˆ2, is proportional
to the product of d2j and the covariance Rθ̃ P R3ˆ3 of the 3-2-1 Euler-angle se-

quence θj P R3 describing UAV j’s sensor attitude. For simplicity of notation, we
take the covariance Rθ̃ of each UAV’s sensor attitude angle to be constant and
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Fig. 5 Individual error ellipses P1 and P2 corresponding to the vision measurements from
the blue and red UAVs having px, y, zq coordinates (in meters) of p´100, 0, 40q and p0, 100, 45q
respectively, where the latter UAV is not shown. Also depicted by the magenta, dash-dot line
is the error ellipse P corresponding to the combination (fusion) of the measurements obtained
from both UAVs, and the separation angle γ.

equal for all UAVs, which would be the case if the UAVs had similar sensors. The
exact analytic expression for Pj is derived in [18].

With the UAVs collecting independent measurements of the target, the fused
geolocation error covariance (GEC) P can be computed according to the following
relationship

P´1
“

ÿ

j

P´1
j . (4)

The nature of the error covariances, both individual and fused, is illustrated in
Figure 5. Note that the fused covariance is determined by three degrees of freedom,
namely the planar distances from the target and the UAVs’ separation angle γ,
which is given implicitly as

rJ1 r2 “ }r1}2}r2}2 cos γ,

where the relative planar positions rj P R2 are given by (3).
To minimize the estimation errors associated with the fused GEC P, we take

the objective function of the stochastic optimal control problem to be

gpzq :“ tracepPq, (5)

which has units of meters squared and essentially minimizes the sum of the vari-
ances corresponding to the major and minor axes of the fused error ellipse.

The nature of this cost function is illustrated in Figure 6 for two UAVs. Note
that if the second UAV’s position is on the x-axis, then the UAVs are collinear,
which entails that the major axes of their error ellipses are perfectly aligned. If
however, its position is on the y-axis, then the UAVs have orthogonal viewing
angles. Thus, one can see that the UAVs certainly benefit from having orthogonal
viewing angles. However, being close to the target is even more beneficial. For
example, if the second UAV’s px, yq-position is p0, 100q, such that the UAVs have
orthogonal viewing angles, then gpzq « 56 [m2]; but if the second UAV is on
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Fig. 6 Cost function gpzq “ tracepPq with the target located at the origin and the first UAV
located at three dimensional position px, y, zq “ p100, 0, 40q, where this UAV’s px, yq position is
indicated by a black “ˆ.” The second UAV has an altitude of 45 [m], and the px, yq coordinates
in the plot represent its planar position.

top of the target, then gpzq « 10 [m2]. Thus, an effective coordination strategy
would be to have at least one UAV close to the target (if possible), as a UAV’s
individual GEC is smallest in this setting and will dominate the cost through (4).
The solution to the stochastic optimal control problem will determine if such a
strategy is indeed possible and, in fact, optimal.

2.6 Stochastic Optimal Control Objective

The stochastic optimal control problem is to determine the optimal feedback con-
trol policy µ˚k : Z Ñ C2, k P t0, 1, . . . ,K ´ 1u, that minimizes

Jpzq “ E

«

K
ÿ

k“0

gpzkq

ˇ

ˇ

ˇ

ˇ

ˇ

z0 “ z

ff

, @z P Z, (6)

where zk “ zpkTsq, K P N, Er¨s denotes expectation, gp¨q is given by (5), and
z0,z1, . . . , zK is a Markov Decision Process that evolves according to the transition
probability ppz1 |z,uq determined by the models in Sections 2.2 and 2.3 and the
state definitions in Section 2.4, under the feedback law uk “ µ

˚
k pzkq. Note that the

state transition probability ppz1 | z,uq can also be written as ppzk`1 |zk,ukq. To
solve this problem, we present a novel optimal policy generation algorithm based
upon the policy iteration technique known as regression Monte Carlo. To describe
the method, we first introduce a few basic definitions and principles underlying
dynamic programming.
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3 Dynamic Programming

Dynamic programming exploits the Markovian nature of the dynamics and hinges
on the notion of the value function, or cost-to-go from state z P Z at time k P

t0, 1, . . . ,K ´ 1u, which is defined as

Vkpzq :“ gpzq ` min
uk,uk`1,...,uK´1

E

«

K
ÿ

`“k`1

gpz`q

ˇ

ˇ

ˇ

ˇ

ˇ

zk “ z

ff

,

where uk P Upzkq and Upzq denotes the state-dependent action space, which we
assume is finite for all z P Z throughout this work. For k “ K, one has that
VKpzq “ gpzq, and for k P t0, 1, . . . ,K ´ 1u, the cost-to-go is computed (offline) in
reverse chronological order according to the following recursion

Vkpzq “ gpzq ` min
uPUpzq

E
”

Vk`1pz
1
q

ˇ

ˇ

ˇ
z,u

ı

“ gpzq ` min
uPUpzq

ż

Vk`1pz
1
qppz1 |z,uqdz1, (7)

which holds due to Bellman’s principle of optimality (see [23], Chapter 6). As the
minimization is performed, the optimal control policy can be formed as

µ˚k pzq “ arg min
uPUpzq

´

gpzq ` E
”

Vk`1pz
1
q

ˇ

ˇ

ˇ
z,u

ı ¯

. (8)

Performing the sequence of computations in (7) for k P tK ´ 1,K ´ 2, . . . , 0u ul-
timately yields J˚pzq “ V0pzq,@z P Z, where J˚pzq is the minimum value of (6)
under the feedback law (8).

3.1 Basic Monte Carlo Solution

A significant hurdle in computing (7) is the expectation, i.e., the integral over
the implicitly specified state transition probability ppz1 |z,uq. In standard Monte
Carlo methods, this computation is approximated through empirical averaging. In
particular, for a given z P Z, one can take

Vkpzq « gpzq ` min
uPUpzq

1

Ns

Ns
ÿ

i“1

Vk`1

`

z̃piq
˘

,

where the z̃piq are the Ns Monte Carlo random samples, extracted from the distri-
bution ppz1 |z,uq. Furthermore, to limit the computation of the value function to
a finite number of points, one may restrict the computation of the value function
Vkpzq to a finite set Z Ă Z having M distinct elements. This leads to the following
approximation of the value function and optimal control policy in (7) and (8),
respectively:

Vkpzq « gpzq ` min
uPUpzq

1

Ns

Ns
ÿ

i“1

Vk`1

`

q
`

z̃piq, Z
˘˘

(9)

µ˚k pzq “ arg min
uPUpzq

”

gpzq `
1

Ns

Ns
ÿ

i“1

Vk`1

`

q
`

z̃piq, Z
˘˘

ı

,
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where the computation is carried out only for z P Z and q denotes the quantization
function given by

qps, Xq :“ arg min
xPX

}s´ x}1

for s in Rn and a finite set X Ă Rn. To lookup the optimal command uk for an
arbitrary state z P ZzZ, one takes uk “ µ

˚
k

`

qpz, Zq
˘

.
This method is suitable for smaller stochastic optimal control problems, such

as the single-UAV target tracking scenario for which the state dimension n is 5,
as demonstrated in [13]. However, such a state space quantization method is sim-
ply infeasible for larger state spaces, such as that corresponding to the two-UAV
scenario wherein n “ 9. The multi-agent stochastic optimal control literature has
addressed even larger problems using tools such as factored MDPs [24] and path
integral control [25], which would allow one to address problems involving larger
UAV teams and even multiple targets. However, such approaches typically have
restrictive requirements that involve such needs as an explicit state transition
probability function, the solution of complex integrals, continuous state spaces
with small hypervolume, and additive noise dynamics. To avoid such limitations
that hinder a realistic problem formulation, we employ the sophisticated Regres-
sion Monte Carlo technique to determine an approximately optimal policy in the
present setting of two agents tracking a single target. This will provide insight into
the nature of the optimal solution required for larger problems as well as a pol-
icy suitable for real-world implementation. The topic of more UAVs and multiple
targets is discussed in the concluding remarks of Section 6.

3.2 Regression Monte Carlo

Regression Monte Carlo (RMC) is a simulation-based policy iteration algorithm
that was introduced to stochastic control in the context of optimal stopping by
Longstaff and Schwartz in [26] and further formalized by Egloff in [27] with ad-
ditional convergence analysis. It is suitable for moderate dimensional stochastic
optimal control problems, e.g., those having state dimension in the 1 ´ 10 range,
wherein one may not have an analytic expression for the state transition probability
but can easily generate samples. The power and versatility of RMC is underscored
by its use in determining optimal policies for managing influenza outbreaks in [28],
as well as optimal policies for autonomous vehicle coordination in the current set-
ting. Here we present the method in the general setting following the description
of [28]; however, we provide a novel perspective of the algorithm. In particular,
we present RMC as a policy generation technique rather than as a policy iteration
technique and discuss its relationship to the state space quantization method of
Section 3.1.

3.2.1 Policy Generation

This work utilizes the Q-value (referred to as the continuation cost in [28], or
perhaps more commonly as the Q-factor [29]), which is defined as

Qkpz,uq :“ min
uk`1:K´1

E

«

K
ÿ

`“k

gpz`q

ˇ

ˇ

ˇ

ˇ

ˇ

zk “ z,uk “ u

ff

,
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where uk`1:K´1 is shorthand notation for the sequence uk`1,uk`2, . . . ,uK´1. The
Q-value is the expected cumulative (or pathwise) cost of being at a state z at time
k, applying control action u P Upzq at that time, and then applying an optimal
policy from time k`1 onward. Since, for t P tk`1, k`2, . . . ,K´1u, ut is a feedback
policy, i.e., ut “ µtpztq, the optimization is not over a fixed sequence but over the
sequence of mappings tµtpztqu

K´1
t“k`1.

The Q-value and the value function are related as follows:

Qkpz,uq “ gpzq ` E
”

Vk`1pz
1
q

ˇ

ˇ

ˇ
z,u

ı

“ gpzq `

ż

Vk`1pz
1
qppz1 |z,uqdz1, (10)

and

Vkpzq “ min
uPUpzq

Qkpz,uq.

Thus, the optimal control policy is also formed as

µ˚k pzq “ arg min
uPUpzq

Qkpz,uq. (11)

The main idea of RMC methods is to determine µ˚k pzq from (11) for k P tK ´

1,K ´ 2, . . . , 0u, by approximating Qkpz,uq for each u P Upzq and for all z P Z
through Monte Carlo simulations of the right-hand-side of (10). To simplify the
introductory discussion of RMC, we assume for now that the control action space
Upzq is the same for all z P Z and hence refer to it simply as U . In RMC, the
continuation costs are estimated in reverse chronological order by regressing sample
continuation costs onto statistics derived from the starting points in a stochastic
mesh Z Ă Z that is generated at the start of the algorithm and is fixed over time.
Moreover, in RMC, one generates a single realization of the continuation cost for
each of the M points in the stochastic mesh Z “ tzp1q,zp2q, . . . ,zpMqu and for each
control action in U and then carries out cross-sectional regression to fit the entire

map pz,uq ÞÑ QK´1pz,uq. For now we take Z as a given quantity and discuss the
selection of this quantity in the section that follows.

The use of a single Monte Carlo simulation for each point in Z differs from the
state space quantization method of Section 3.1, where one estimates the expecta-
tion in (10) by generating Ns scenarios for each state z P Z and each control action
u P U at time k and then taking the empirical average. While this is reasonable
for a single point, it is impractical to do so for each control action in U and point
z P Z, as this would require NuMNs Monte Carlo simulations, where Nu “ |U | and
M is typically large for sizable state spaces, e.g., those having dimension n ě 5.
Thus, whereas the state space quantization method yields a pointwise estimate
for the value function using multiple Monte Carlo simulations at each point in Z,
RMC utilizes regression to produce a parametric form of the Q-value based on a
single Monte Carlo simulation for each point in Z.

In RMC, the algorithm begins at time k “ K ´ 1 by generating a “noisy”
instance of the continuation cost QK´1pz,uq for each of the points in Z and for a
particular control action u P U . These samples of the continuation cost are denoted

by q̃
pi,uq
K´1 and are given by

q̃
pi,uq
K´1 “ g

´

z
piq
K´1

¯

` g
´

z̃
pi,uq
K

¯

,
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where each z̃
pi,uq
K is a Monte Carlo sample of the state at time K starting from

each of the points zpiq P Z at time K ´ 1 and applying control action u to each
of these points. In the preceding equation we have appended the subscript K ´ 1
to each of the points in Z to distinguish them from future states. Furthermore,
in this context, “noisy” refers to the stochastic uncertainty in the state transition

probability distribution ppzk`1 |zk,ukq. At this point, one regresses
 

q̃
pi,uq
K´1

(

onto

statistics derived from
 

z
piq
K´1

(

in order to generate an approximation Q̂K´1pz,uq

to the corresponding continuation cost QK´1pz,uq. As the regression step is crucial
to the performance of RMC, this will be addressed in one of the following sections.

Once this is done for each u P U , the approximately optimal policy at time
K ´ 1 is then given by

µ̂˚K´1pzq “ arg min
uPU

Q̂K´1pz,uq,

where in general the notation Q̂kpz,uq denotes the estimate of the continuation
cost at time k obtained through regression. Similarly, µ̂˚k pzq refers to the estimate
of the optimal policy map at time k. In standard Monte Carlo value iteration one
would note that

V̂K´1pzq “ min
uPU

Q̂K´1pz,uq

and repeat the same procedure for k “ K´2 by substituting V̂K´1pzq for VK´1pzq

in (10). However, this practice generally leads to rapid error accumulation. To
minimize this, RMC focuses on approximating the optimal policy map µ˚k pzq rather
than the continuation cost. More specifically, at each time k one simulates a single
trajectory for each point zk in the stochastic mesh Z using control action u at
time k and implementing future controls based on the newly constructed policy
map µ̂˚t pzq, where t P tk` 1, k` 2, . . . ,K ´ 1u. One then sums the associated stage

costs to generate a “noisy” sample for Qkpz,uq, which is denoted by q̃
pi,uq
k and is

an exact realization of the pathwise cost based on the policy constructed so far.

In general, for k P t0, 1, . . . ,K ´ 2u, q̃
pi,uq
k is given by

q̃
pi,uq
k “ g

´

z
piq
k

¯

` g
´

z̃
pi,uq
k`1

¯

`

K´1
ÿ

t“k`1

g
´

z̃
pi,utq

t`1

¯

,

where ut “ µ̂
˚
t pzq. As in the case of k “ K´1, one then regresses the values of these

sample continuation costs onto statistics derived from the corresponding points in
the stochastic mesh Z to generate an approximator Q̂kpz,uq for the continuation
cost at the current time k. Once this is done for each u P U , the optimal policy
is formed in the same manner as when k “ K ´ 1. The algorithm then marches
backward in time, repeating the same procedure of Monte Carlo simulations and
regression until reaching time k “ 0.

The overall produce described above is given by Algorithms 1 and 2 and has an
overall computational complexity of OpK2MNuq. In a typical implementation, the
inner for loop of Algorithm 1 is computed in parallel while the outermost for loop
of Algorithm 2 is eliminated through the use of vectorized operations, i.e., the pro-
cedures described within the loop are performed on all elements of the stochastic
mesh at (practically) the same time. Two key components of the algorithm must
be selected to obtain acceptable performance, namely the stochastic mesh Z and
the regression type used.
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Algorithm 1 Regression Monte Carlo

Require: Set Z containing M states in Z
1: Nu Ð |U |

2: for k “ K ´ 1,K ´ 2, . . . , 0 do

3: for ` “ 1, 2, . . . , Nu do

4: Using Algorithm 2, generate cumulative cost realization vector q P
RM corresponding to control action up`q P U

5: Regress qi’s against statistics derived from each zpiq P Z to deter-
mine Q̂kpz,u

p`q
q

6: end for

7: end for

8: return Q-value approximators Q̂kpz,uq, where k P t0, 1, . . . ,K ´ 1u

Algorithm 2 Generate a sample of the pathwise cost for each point in Z

Require: Set of states Z Ă Z; control action up`q P U ; time index k;

Q̂k`1pz,uq, Q̂k`2pz,uq, . . . , Q̂K´1pz,uq if k ď K ´ 2.

1: M Ð |Z|

2: for i “ 1, 2, . . . ,M do

3: Sample z̃piq „ ppz1 |zpiq,up`qq, where zpiq P Z

4: qi Ð g
´

zpiq
¯

` g
´

z̃piq
¯

5: if k ` 1 ă K then

6: for t “ k ` 1, k ` 2, . . . ,K ´ 1 do

7: zpiq Ð z̃piq

8: u˚ “ arg min
uPU

Q̂tpz
piq,uq

9: Sample z̃piq „ ppz1 |zpiq,u˚q

10: qi Ð qi ` g
´

z̃piq
¯

11: end for

12: end if

13: end for

14: return q P RM

3.2.2 Forming the Stochastic Mesh

In traditional RMC, the stochastic mesh Z corresponds to a collection of sim-

ulated paths
 

z
piq
0:K

(

, where i P t1, 2, . . . ,Mu, that are generated with an initial

policy µ
p0q
k pzq starting from a collection of initial conditions

 

z
piq
0

(

. Here, z
piq
0:K

denotes the ith realization of the Markov Decision Process z0,z1, . . . , zK with ini-

tial condition z
piq
0 and feedback law uk “ µ

p0q
k pzq. Thus, Z is in reality a time

dependent quantity in traditional RMC and is equal to
 

z
p1q
k ,z

p2q
k , . . . ,z

pMq
k

(

at
time k. As with any regression, a higher concentration of samples in a given neigh-
borhood improves the prediction accuracy therein. Hence, one major source of
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influence on the performance of the resulting policy map µ̂˚k pzq is the initial pol-

icy map µ
p0q
k pzq, since it steers the stochastic evolution of the states to generate

the stochastic mesh
 

z
piq
0:K

(

. Therefore, an initial policy map close to the optimal
will lead to re-simulation trajectories in Algorithm 2 that lie close to the original
trajectory set where the prediction accuracy is highest; otherwise, one is forced to
perform extrapolation with the Q-value approximators Q̂kpz,uq, which may lead to
large errors.

To circumvent the need and influence of an initial policy map, we propose
choosing a set Z Ă Z for which the majority of trajectories corresponding to
the optimal controller µ˚pzq will always remain close to this set in some sense.
This avoids extrapolation in the regression-based prediction of the continuation
cost, and hence, in principle, the prediction accuracy should remain sufficient for
choosing the correct control action. Moreover, with intuition and insight into the
problem, one can construct Z to have a majority of the samples near the steady-
state optimal trajectories. Thus, we take the stochastic mesh Z to be randomly
generated at the start of RMC according to some distribution over the state space.
One may also generate deterministic grids for Z, as is common for the state space
quantization method of Section 3.1; however, the dimensionality of the problem
may hinder such an approach.

3.2.3 Regression

The regression type used is crucial to the performance of RMC because inaccurate
estimates of the Q-value lead to incorrect control decisions. One should note that in
Algorithm 2, at time k “ 0, running the forward simulations to generate samples of
the pathwise cost requires K sequential samples of the state transition probability
for each point in Z. Moreover, as k decreases in Algorithm 1, the variance of
the pathwise costs increases, and accordingly, robust / regularized regression is
required to mitigate these effects.

A number of solutions are available to deal with the said challenge, and in-
clude such techniques as radial basis functions, smoothing splines, neural networks,
multivariate adaptive regression splines (MARS), `1-regularized regression, ran-
dom forests, and others. Each approach has its own tradeoffs in regard to tuning,
computational requirements, scalability (both in the number of observations and
dimensions), and predictive power, and we refer the reader to [30] for a detailed
overview of each approach.

We adopt here a particularly effective technique that is inspired by [22] and
involves building a k-d tree for the initial condition set Z and applying least-squares
regression at each leaf. In particular, one takes Lj partitions of the jth component
of the state vector, such that there are a total of Np “

ś

j Lj partitions of the state
space, each having the same number of samples. One should also take care to bound
the domain of the local functions at each leaf for the purposes of extrapolation,
which we discuss later. This entire process is illustrated in Figure 7 with a 2-
dimensional example, where the bounds of each domain, denoted by D` for ` P
t1, 2, . . . , Npu, are determined by the outermost points along each direction. In the
presence of outliers, one may also wish to either remove the outliers before setting
the domain limits or limit the domain to a fixed number of standard deviations
along each direction, where standard deviation is computed using only the particles
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Fig. 7 Partitioning scheme for L “ p2, 2q and ζpiq „ N p0, Cq with C P R2ˆ2. Here, i P
t1, 2, . . . ,Mu with M “ 1, 200, c1,1 “ c2,2 “ 10, and c2,1 “ c1,2 “ 2. The black rectangles
indicate the individual domains. The split in the ζ1 coordinate happens roughly at zero to
divide the number of points in half, while the splits in the ζ2 coordinate further subdivide the
points such that each bin contains 300 samples.

at the given leaf. We employ the former practice, which is illustrated in Figure 7.
The overall domain is D :“

Ť

`D`.

The algorithm scales well with the number of sample points M , which we take
to be a multiple of Np. However, it is exponential in the dimension n and is hence
suited to moderate dimensional problems. The original algorithm from [22] fits
linear models at each leaf using standard least squares; consequently, the fits are
not robust to the high variance samples and have a limited ability to capture
nonlinearities in the continuation cost. To address these limitations, we propose
using an `1-regularized quadratic fit in each partition.

Let I` Ă t1, 2, . . . ,Mu denote the subset of the indices of the particles that be-
long to partition `, with |I`| “ m “M{Np. Furthermore, with I` “ ti1, i2, . . . , imu,
we take yp`q :“ pqi1 , qi2 , . . . , qimq P Rm. Here, qi is the pathwise cost sample that

is generated from Algorithm 2 and associated with state zpiq P Z Ă Rn, where
i P I`. Additionally, we denote by Hp`q P RmˆNb the predictor matrix, where
Nb “ n ` npn ` 1q is the number of basis functions, not including the constant

term. Thus, the rows of the predictor matrix take the form H
p`q
i˚ “ hJpzpiqq, where

h : Rn Ñ RNb is used to evaluate the quadratic basis functions for each point zpiq

in partition `. We assume that the regression equation is of the following form

yp`q “ Hp`qβp`q ` β
p`q
0 1mˆ1 ` ε

p`q.
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Here εp`q P Rm is the vector of residuals in partition `, 1mˆ1 is an m-length vector

of all ones, and β
p`q
0 P R and βp`q “ pβ

p`q
1 , β

p`q
2 , . . . , β

p`q
Nb
q P RNb are the coefficients

to be determined in the regression. To determine the regression coefficients in a
robust fashion, we minimize

}yp`q ´ β
p`q
0 1mˆ1 ´H

p`qβp`q}2 ` λ}β
p`q
}1, (12)

where λ ą 0 is a tuning parameter. As noted in §3.4.4 of [30], this problem can be
solved in the same time complexity as regular least squares, and hence it is suited
for repeated use in the partitioned regression scheme, i.e., for each ` P t1, 2, . . . , Npu.

Once the regression coefficients have been determined, then the estimator for
the Q-value in Algorithm 1, takes the form

Q̂kpz,uq “ xβ
p`,uq
k ,hpzkqy ` β

p`,uq
0,k , zk P D`

where x , y denotes inner product, hpzkq P RNb is the aforementioned mapping that
forms the rows of the predictor matrix Hp`q, and ` is the index of the partition D`
to which zk belongs. Also, we have indicated the dependency of the regression co-
efficients on both the time k and the control action u, which had been temporarily
omitted for simplicity.

Ideally, the controller keeps the steady state trajectories in the domain D;
however, in the case that extrapolation must be performed, one should be wary of
the behavior of the quadratic fit outside D. Thus, if z R D, we evaluate Qkpz,uq
at the point in D closest to z using the 1-norm, as we have found this practice to
produce satisfactory performance. Moreover, we expect the partitioned quadratic
fits to interpolate well in the domain but avoid their use for extrapolation.

3.2.4 Convergence and Sample Size

Regarding the algorithm’s convergence to the optimal solution, we note that this
subject has been formally studied in [31], and the reader is referred to the said
work for formal proofs of convergence. Nonetheless, we note that convergence to
the true Q-values (and hence the optimal policy and true value function) are
obtained in the joint limit as the total number of Monte Carlo samples M and
the total number of partitions Np (and in particular each Lj) tends to infinity. In
[31], the obtained result is rather general, principally requiring the Q-values to be
bounded. A limitation is that M must be exponential in Np, i.e., the number of
samples grows very quickly as the number of degrees of freedom for the regression
is increased. We also note that [31] assumes unpenalized regression, i.e., λ “ 0 in
(12), though this is unlikely to affect the results.

Since computational tractability necessitates a finite sample size M , one par-
ticularly noteworthy result from [31] is that the approximation error is of order
OpplogcMq{

?
Mq for a certain c ą 0, which is close to the classical Monte Carlo

error of Op1{
?
Mq. The precise estimates are rather complex and depend on a num-

ber of factors including functional smoothness of the Q-values and smoothness of
the underlying stochastic dynamics, to name a few. More precise and detailed re-
sults about convergence rates have been given for the case of optimal stopping
in [27].
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To balance computational considerations with the accuracy of the solution
using the partitioned robust regression scheme of the previous section, we recom-
mend using a large number of samples per partition m that is linear in the number
of basis functions and is on the order of a few hundred or more samples per basis
function. As an example, for the problem setup that we consider in Section 5,
we have found that just over 275 samples per degree of freedom in each of the
partitioned quadratic fits produces satisfactory performance. Without symmetry
arguments that eliminate the need for certain state space partitions to be con-
sidered, M “ mNp “ m

ś

j Lj , and hence the total number of simulations M is
exponential in the number of partitions. Thus, for moderate dimensional prob-
lems, the number of partitions Lj for state j is usually small (less than 3) unless
the state enters into the dynamics in a more nonlinear fashion, thus requiring a
greater number of partitions.

4 Regression Monte Carlo for Target Tracking

We now specialize the algorithms described in Section 3 to the problem of vision-
based target tracking. In particular, we first present an adaptation to Algorithm 1
that addresses the fact that some of the components of the state space described
in Section 2.4 were discrete. Next, we describe the stochastic mesh Z, and finally,
we discuss a modification to the cost function that makes it radially unbounded,
thereby ensuring the distances of the UAVs relative to the target remain bounded.

4.1 Modified Algorithm

Since the state space of the stochastic kinematic model of the UAV described in
Section 2.2 had a few discrete components, the standard RMC algorithm must
be slightly modified for the application of vision-based target tracking with two
UAVs. In particular, we need to run Monte Carlos simulations for all roll-angle
pairs r belonging to a finite set C Ă C2 combined with all (finitely-many) allowable

roll action pairs u P Uprq, where C “ trp1q, rp2q, . . . , rpNrqu,

Uprq :“ Upr1q ˆ Upr2q,

and Nr “ |C| “ 15 (versus 5 ˆ 5) due to symmetry arguments discussed in the
appendix. To accommodate these modifications, we remove the roll states from Z
and denote the resulting continuous state space by X Ă R7, where χ P X is given
by

χ :“ pp1, p2, vq

and pj is described in Section 2.4. The resulting stochastic mesh described in
Section 3.2.2 is denoted by X.

The modified RMC algorithm for vision-based target tracking with two-UAVs
is presented in Algorithm 3. The primary differences with respect to Algorithm 1
is the addition of a for loop over all discrete-valued states, as well as the formation
of the full initial condition set Z from the set X of continuous initial condition
states and the given roll-angle pair r P C. Furthermore, the regression is performed
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using only the continuous states in X, and thus the dimensionality of the regres-
sion problem is reduced to nr “ 7. In practice, the two innermost loops are often
combined and run in parallel for increased computational performance. On a final
note, when generating the cumulative cost samples for each roll action with Algo-
rithm 2, one should replace U with Uprq in the requirements section and U with
Uprpiqq in Line 8.

Algorithm 3 Regression Monte Carlo for Target Tracking

Require: Initial condition set X Ă R7, where |X| “ M ; set of roll-angle pairs

C Ď C2; action space Uprq
1: Nr Ð |C|
2: for k “ K ´ 1,K ´ 2, . . . , 0 do

3: for s “ 1, 2, . . . , Nr do

4: Form initial condition set Z from X, such that for each χpiq “

pp
piq
1 , p

piq
2 , vpiqq P X, the following relationship holds:

zpiq “ pp
piq
1 , r

psq
1 , p

piq
2 , r

psq
2 , vpiqq, where i P t1, 2, . . . ,Mu

5: Nu Ð |U
`

rpsq
˘

|

6: for ` “ 1, 2, . . . , Nu do

7: Using Algorithm 2, generate continuation cost realization vector

q P RM by applying control action up`q P U
`

rpsq
˘

to each point

zpiq P Z

8: Regress qi’s against statistics derived from corresponding χpiq’s

to determine Q̂kpz,u
p`q
q

9: end for

10: end for

11: end for

12: return Q-value approximators Q̂kpz,uq, where k P t0, 1, . . . ,K ´ 1u

4.2 Stochastic Mesh

While modified RMC approach offers significant computational savings over a basic
Monte Carlo method for value iteration, it generally requires adjusting the initial
condition set and the regression to obtain satisfactory performance. Thus, we now
describe the initial condition set X of Algorithm 3 that comprises the continuous
states. For UAV j, if the relative position states of pχ3j´2, χ3j´1q are represented in
polar coordinates as pρj cosϑj , ρj sinϑjq, then we take ρj to be normally distributed
with mean µρ ą 0 and variance σ2ρ and ϑj to be uniformly distributed on rϑ, ϑs.
Typically, pϑ, ϑq “ p´π, πq. However, if one exploits symmetry per the discussion
of the appendix, this need not be the case. Also, in the process of generating M

samples of ρj , we only retain those samples that have strictly positive values and
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Fig. 8 Cost function gpzq “ tracepPq with the target located at the origin and the first UAV
located on top of the target at an altitude of 40 [m]. Note that the separation angle γ is 0
since the first UAV’s planar distance is ρ1 “ 0; consequently, the fused GEC is completely
characterized by the second UAV’s planar distance ρ2 from the target. The second UAV has
an altitude of 45 [m].

those that are within 3σ of the mean, as the outer boundaries of the partitioning
domain are set in the manner discussed and illustrated in Section 3.2.3. Next,
we take χ3j , the relative heading angle of UAV j, to be uniformly distributed
on r´π, πs and the target speed χ7 “ v to be uniformly distributed on rv, v̄s,
where v and v̄ are discussed in Section 2.3. Moreover, at the start of Algorithm 3,
we generate M samples of the continuous states in the manner just described
to form X “ tχp1q,χp2q, . . . ,χpMqu, where the mean µρ and variance σ2ρ of the
radial distribution of the relative planar position states are tuning parameters set
beforehand.

4.3 Barrier Function

While in the single UAV case, the stage cost given by (5) directly penalizes distance
from the target, this is not the case for both agents in the two-UAV scenario. In
particular, having UAV 1 directly above the target and UAV 2 far away is only
slightly worse than having both UAVs directly above the target, since the smallest
planar UAV distance from the target is the dominant factor in the fused GEC.
This is illustrated in Figure 8, where the range of trace values is drastically smaller
than that of Figure 6. This disparity in the range of trace values arises from UAV
1 having zero planar distance from the target in Figure 8 and a planar distance
of 100 [m] from the target in Figure 6. Moreover, UAV 2’s position has an almost
negligible effect on the fused GEC in the former scenario while in the latter scenario
its position has a considerable impact on the fused GEC. Overall, this suggests
that the cost function is not radially unbounded with respect to the second UAV’s
planar distance from the target.

To avoid using the Q-value approximators far from the stochastic mesh, we
added a barrier-type function to the stage cost that is non-negative, radially un-
bounded, and only nonzero for large distances. Hence, we present the following
augmented cost function to be used in the dynamical optimization of Algorithm 3:

gbpzq :“ tracepPq ` bpzq, (13)
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where

bpzq “
2
ÿ

j“1

maxt0, ρj ´ pµρ ` 2σρqu,

ρj denotes UAV j’s planar distance from the target, and µρ and σρ are the mean
and standard deviation of the normally distributed planar distances from the target
that form the initial condition set described in Section 4.2. While the barrier
function bpzq penalizes trajectories where the UAVs wander very far from the
target, it has a negligible effect along optimal trajectories, which should remain
close to the target.

5 Results

We now study the nature of the optimal coordination strategy and the effective-
ness of the modified RMC approach in the optimal coordination of two UAVs to
perform vision-based target tracking in a stochastic environment. To establish the
benefit of the proposed control approach, we compare the performance of our (ap-
proximately) optimal controller against an effective baseline strategy, as well as
the previously proposed approach of coordinated standoff tracking. Additionally,
we seek to gain insight regarding the optimal control policy to understand the
predominant behavior of the two fourth-order UAVs, as they cooperatively track
the stochastic ground target.

5.1 Problem Setup and Solution Parameters

Throughout this section we extensively analyze the results of a fairly realistic
tracking scenario that is summarized by the parameters pertaining to the target
and UAVs provided in Tables 1 and 2, respectively. The scenario is similar to that
considered by [2], wherein the authors presented field test results for a single UAV
(capable of 15´ 20 [m/s] airspeeds) tracking a target that traveled between 5´ 10
[m/s].

Table 2 Parameters in Stochastic UAV dynamics

Parameter Description Value Units
µs nominal airspeed 18 m/s
σ2
s airspeed variance 16{25 m2/s2

αg gravitational accel. 9.81 m/s2

C roll command set t0,˘∆,˘2∆u deg.
∆ max roll change 15 deg.

The parameters pertaining to the general dynamical optimization of Section 2.6
are presented in Table 3. The planning horizon of KTs “ 30 seconds was chosen
so that, within this time, the UAV could perform a loop at max bank, which for a
maximum turn rate of ωmax “ αg tanp2∆q{s [rad./s] is approximately 20 seconds.
With the 30-second horizon, the optimization takes into account long-term impact
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Table 3 General Parameters

Parameter Description Value Units
Rθ̃ sensor attitude covariance 9I3ˆ3 deg2

ph1, h2q UAV altitudes p40, 45q m
Ts zero-order hold period 2 s
K planning horizon 15 -

Table 4 RMC Parameters

Parameter Description Value
m samples per partition 10, 000
L partitioning scheme p2, 2, 4, 2, 2, 4, 2q
λ regularization parameter 3
µρ radial distribution mean 70
σ2
ρ radial distribution variance 352

of committing to a loop, as the control policy µ̂˚k pzq is applied in a receding horizon
fashion, i.e., we always apply µ̂˚0 pzq at every time step.

The parameters pertaining to the RMC solution are presented in Table 4,
where the augmented cost from (13) was minimized using Algorithm 3 along with
the techniques for computational savings presented in the appendix. However,
throughout this section the terms cost and stage cost refer to the original cost
function given by (5), which is simply the trace of the fused GEC. Also, we hence-
forth refer to the resulting policy as the optimal policy with the understanding
that this policy is in reality an approximation to the true optimal policy.

Regarding the regression, each partition had 36 degrees of freedom in the
quadratic regression, as the dimension of the continuous state space X is 7. Hence,
we chose m (the number of samples per partition) to avoid overfitting, while the
regularization parameter λ was chosen to add robustness to process noise, where
λ P r3, 10s constitutes a considerable degree of regularization and generally works
well. Regarding the partitioning scheme, recall that L P N7 is the vector denoting
the number of partitions for each component of the continuous state space X , and
hence the total number of partitions is Np “

ś

j Lj “ 512, though one does not
need to estimate the Q-value in more than 320 partitions according to the sym-
metry considerations of the appendix. Thus, the size of the stochastic mesh X is
M “ 320 ¨ 104. Note that choosing 2 partitions for the relative x and y coordinates
implies that the partitions of the planar positions correspond (approximately) to
standard Cartesian quadrants, since the 2-dimensional distributions that generate
the individual (planar) position samples of the initial condition set are radially
symmetric per the discussion of Section 4.2. The mean and variance of the nor-
mally distributed planar distances are also given in this table. Also, we have found
that the relative heading coordinates are the most sensitive to the number of re-
gression partitions (due to the nonlinearity) and hence choosing L3 or L6 to be
less than 3 typically yields poor performance. Through considerable testing, we
found that this particular partition configuration is a good compromise between
computational feasibility and mitigating the effects of the nonlinearity through
additional partitions.
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Fig. 9 Optimally coordinated trajectories over a three minute window. The starting positions
of all vehicles are marked by an “˝” while the ending positions are denoted by an “ˆ”. The
target (denoted by T ) begins at the origin travelling at approximately 5.4 [m/s] and finishes
its trajectory travelling at approximately 7.3 [m/s]. Both UAVs (denoted by A1 and A2) begin
with zero roll.

To highlight key features of the optimal trajectories, we have provided a repre-
sentative sample trajectory in Figure 9 and the corresponding performance param-
eters in Figure 10. From Figure 9, one should note how the optimal trajectories
comprise both sinusoidal and orbital trajectories, where the latter is not necessar-
ily centered around the target. At the beginning of the simulation, one UAV is
performing an “S” turn (sinusoidal pattern) while the other is performing a loop.
The UAVs switch roles and perform the same joint maneuver before both UAVs
make out-of-phase loops and then out-of-phase “S” turns. From the top plot in
Figure 10, distance coordination becomes apparent, as the peaks of the distance
curves alternate. The second subplot of this figure indicates that the UAVs do not
strive to maintain orthogonal viewing angles, as the curve does not cluster around
γ “ 90˝. However, the UAVs do benefit from orthogonal viewing angles when they
are both moderately far, e.g., t “ 82 [s], where the cost is kept from spiking by
such a configuration. Overall, minimum distance is the dominant factor in the cost
function, though viewing angle coordination does benefit the UAVs when they find
themselves moderately far from the target.

While this particular instance of a controlled stochastic process does not es-
tablish distance coordination as the predominant coordination strategy, it does
illustrate typical behaviors encountered with this policy. Namely, the optimal tra-
jectories comprise a rich mixture of sinusoidal and orbital trajectories that oc-
casionally pass over or near the target rather than just a single trajectory type,
which is the primary goal in the vast majority of the target tracking literature.
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Fig. 10 Performance metrics of optimally coordinated UAVs: planar distances ρj , separation
angle γ, and trace of the fused GEC P.

5.2 RMC Performance

We now compare our RMC solution against alternative control strategies that
roughly consider the same problem formulation. In particular, we first compare
the strategy with two UAVs that are running uncoordinated optimal policies,
and secondly we compare the strategy with the common approach of coordinated
standoff tracking.

5.2.1 Comparison with Uncoordinated Optimal Controllers

To generate an appropriate uncoordinated baseline strategy, we solve the stochastic
optimal control problem of Section 2.6 for a single UAV and then apply the same
optimal control law for the two UAVs independently. Since the problem for a
single UAV has modest dimension, one can solve it using the basic Monte Carlo
solution of Section 3.1. As a result, we performed value iteration according to
Section 3.1 to generate two individual control policies with the cost function (5)
and the parameters of Table 3. We used M “ 1, 000 Monte Carlo samples in
(9) with a finite state space Z described by Table 5. We denote the resulting

policies as π
p1q
k

`

ζ
p1q
k

˘

and π
p2q
k

`

ζ
p2q
k

˘

, where k P t0, 1, . . . ,K ´ 1u, ζp1q “ pp1, r1, vq,

ζp2q “ pp2, r2, vq, and pj is defined in Section 2.4. As in the case of coordinated
UAVs, we always apply these policies in a receding-horizon fashion, i.e., we always
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Fig. 11 Uncoordinated trajectories over a three minute window. The starting positions of
all vehicles are marked by an “˝” while the ending positions are denoted by an “ˆ”. The
remaining notation, initial conditions, and target trajectory are the same as in Figure 9.

use the time-stationary policies π
p1q
0

`

ζ
p1q
k

˘

and π
p2q
0

`

ζ
p2q
k

˘

for the uncoordinated
UAVs for all k P Zě0.

Table 5 State Space Discretization in One-UAV Scenario

Set Description Value Units
Y relative positions t´225,´220, . . . , 225u m
Ψ relative headings t0, 15, . . . , 345u deg.
C roll commands t0,˘15,˘30u deg.
W target speeds t4.5, 5.0, . . . , 12.5u m/s
Z discrete state space Y 2 ˆ Ψ ˆ C ˆW -

To illustrate the nature of this control strategy, we have provided plots in Fig-
ures 11 and Figures 12 illustrating the behavior and performance of uncoordinated
controllers for the same initial conditions and target trajectory realization as in
Figures 9 and 10. While each UAV minimizes its own individual GEC, we plot the
fused covariance in the bottom chart of Figure 12. The most noticeable feature
of Figure 11 is the fact that the UAVs primarily make orbital trajectories around
the target, which enables them to keep their worst-case distance from the target
smaller. This is confirmed by the top chart of Figure 12, where the peak planar
distance from the target is approximately 114 [m], whereas that of Figure 10 is
approximately 150 [m]. One can also see the lack of coordination for t P r126, 132s,
as the cost is above 100 during this time period when both UAVs are moderately
far from the target and have viewing angles that are quite far from being orthog-
onal. On a final note, the time-averaged cost for this run was approximately 39.6
[m2] while that of the coordinated control policy was 32.4 [m2]. It is interesting to
note that coordination allows the UAVs to deviate further from the target without
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Fig. 12 Performance metrics of uncoordinated UAVs: planar distances ρj , separation angle
γ, and trace of the fused GEC P.

sacrificing performance. Of course, this deviation must be done in an alternating
fashion, as illustrated by the distance curves of Figure 9.

To better demonstrate the temporal nature of both control strategies in an
expected sense, we have selected an initial condition that is a good starting point
for both strategies and run 50, 000 Monte Carlo simulations from this initial con-
dition with the same realizations of target trajectories to compute both the mean
value and 98th-percentile statistics of the cost, which are provided in Figure 13. By
inspecting Figure 13a, one can see that the optimal control policy converges to the
mean steady-state cost of (approximately) 35 [m2] within one minute while the un-
coordinated controllers take nearly 2 minutes to converge to the mean steady-state
cost of (approximately) 38 [m2]. In addition, the peak average value is significantly
less in the case of the optimal coordinated control policy than in the case of unco-
ordinated policies. Note that the distribution of steady-state costs is independent
of the initial conditions.

Another benefit of the coordinated control policy can be seen in Figure 13b,
where the plot indicates that the tail of the steady-state cost distribution is often
significantly wider in the case of uncoordinated policies. In fact, the 98th-percentile
of the steady-state costs for the uncoordinated policies is about 33% higher than
that of the optimal policy. Moreover, although we have illustrated transient re-
sponse performances for a specific initial condition, the plots in Figures 13a and
13b illustrate typical benefits of the optimal control policy. Namely, with coor-
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Fig. 13 Transient response for initial condition z0 “ p´60, 0,´π{2,´30˝, 0,´60, 0,´30˝, 8.5q,
where zk “ zpkTsq. In this initial condition, the UAVs have orthogonal viewing angles and
are banked max left at a distance roughly equal to their minimum turning radius of 57.2 [m].
The lighter, thinner lines indicate the 95% confidence intervals for the given statistics.

dination, the recovery from initial conditions is typically faster (in an expected
sense), and the tail of the cost distribution is significantly smaller in steady state,
which entails that high cost events are more rare than in the uncoordinated case.

To provide a more objective comparison, we have performed another test over
a wide range of initial conditions. More specifically, we generated M “ 50, 000 ini-
tial conditions randomly according to Section 4.2 and then ran 12-minute Monte
Carlo simulations with each control strategy from these initial conditions using the
same realizations of target trajectories for each approach. To reduce the effects of
initial conditions, we truncated the first two minutes of each run. Computing the
sample mean (over time) of the stage costs associated with each run yields the
histogram presented in Figure 14. Hence, whereas the previous test illustrated the
first few minutes of a transient response and computed certain statistics across
samples, here we are computing the mean over time with the first few minutes of
each simulation removed. In this plot, the sample mean and sample standard devi-
ation of the time-averaged costs associated with the optimal policy are 34.91 [m2]
and 2.33 [m4], respectively; those associated with the uncoordinated control poli-
cies are 37.92 [m2] and 4.09 [m4], respectively. Furthermore, the standard error
of the mean is less than 0.02 [m2] in both cases. One can observe that, while the
optimally coordinated control policy reduces the mean of the time-averaged costs
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Fig. 14 Histogram of the stage-cost mean ḡpiq “ p1{301q
ř360
k“60 gpz

piq
k q for 10-minutes of

steady-state behavior with 50, 000 Monte Carlo simulations. The outliers for the uncoordinated
policy are not all shown, as they extend out to nearly 73 [m2].

by only about 8%, it reduces their standard deviation by nearly 43%. This reduc-
tion in standard deviation is illustrated by the widths of the distributions, which
is considerably less in the case of the optimally coordinated strategy. Thus, the
optimally coordinated control policy improves the predictability of the tracking
performance substantially.

One final comparison is provided by plotting the histogram of the steady-state
costs with the effects of time-averaging removed. More specifically, in Figure 15
we provide a histogram of the stage costs given by (5) at each time step for each
of the M “ 50, 000 ten-minute Monte Carlo simulations in steady state. The num-
ber of counts is presented with a logarithmic scale to focus on the tails of the
distributions. One can see that the tail of the cost distribution corresponding to
the uncoordinated policies decays slower than that corresponding to the optimally
coordinated policy. This plot highlights that rare events are less frequent and less
severe with the coordinated control policy than with uncoordinated control poli-
cies. In fact, for stage costs exceeding 400 [m2], the frequency of such costs with
the coordinated control policy are an order of magnitude lower than with the un-
coordinated policies. Since we expect the controlled processes to be ergodic, these
histograms are representative of a single very-long run for each of the cooperative
tracking approaches, e.g., a run lasting hundreds of hours.

5.2.2 Comparison with Standoff Tracking

To establish a fair comparison with the standoff tracking approach, we note that
the minimum allowable standoff distance, %s, imposed by the maximum bank angle
φmax, is given by Equation 5.37 in [3] as follows:

%s ě
pv ` sq2

αg tanpφmaxq
, (14)

where v, s, and αg denote target speed, UAV airspeed, and gravitational acceler-
ation, respectively. With the target traveling at the minimum allowable speed of
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Fig. 15 Histogram of the stage-cost (not averaged over time) for 50, 000, 10-minute Monte
Carlo simulations. The outlying costs of the uncoordinated policy are not all shown, as they
exceed 2, 000 [m2].

4.5 [m/s] and the remaining parameters given in Table 2, we have

%s ě
p4.5` 18q2

9.81 tanp30π{180q
« 89.4 [m].

In an ideal setting for standoff tracking, the target is traveling at a constant velocity
and the UAVs have orthogonal viewing angles at the nominal standoff distance of
%s “ 90 [m]. Hence, with the altitudes of Table 3, tracepPq « 46 [m2]. Recalling
that both the time-averaged cost and ensemble-averaged cost of the optimal policy
in steady state (over many target velocity realizations) were both approximately
35 [m2], one can see that the optimally coordinated policy offers a significant
advantage in terms of average cost, even in this slow target scenario. If the target
were instead traveling at v “ 9 [m/s], or half the UAV’s airspeed, standoff tracking
requires %s ě 128.7 [m] according to (14). Thus, with ρs “ 129 [m], tracepPq «
92.2 [m2], and we have that the average steady steady cost of the optimal policy
is nearly 2.5 times less than that of ideal standoff tracking. Of course, constant
speed aircraft cannot hold a 90˝ separation angle at a fixed nominal distance from a
constant-velocity target, nor does a target travel at a fixed velocity in a real-world
setting. Thus, the numbers presented here for standoff tracking are optimistic.

Overall, the stochastic optimal control approach presents substantial improve-
ments in performance over standoff tracking when the cost is the fused GEC.
Recall that the fused GEC is determined by three degrees of freedom, namely the
UAV distances ρj and their separation angle γ. Accordingly, when one proposes
a standoff tracking approach, one loses two of these three degrees of freedom,
namely the UAV distances, which are the dominant factors in the cost function.
Hence, the performance one can expect from standoff tracking is inherently lim-
ited. Thus, while certain applications might require a minimum standoff distance,
the degradation in tracking performance with vision sensors is substantial and per-
haps warrants the use of alternative sensors, e.g., radar, though such equipment
may require larger UAVs.
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Fig. 16 Histogram of the separation angle γ incurred by the optimal policy during steady-
state at each time step and for each of the 50, 000 ten-minute Monte Carlo simulations.

5.3 Nature of Optimal Solution

Since we have established the benefits of the optimal policy, we now seek to under-
stand its behavioral qualities. We again use the uncoordinated strategy to generate
baseline statistics. We utilize the M “ 50, 000 Monte Carlo simulations that were
described at the end of Section 5.2.1 to generate Figures 14 and 15. Recall that
each simulation comprises a ten-minute trajectory in steady state.

To assess the level of viewing angle coordination, we have generated the his-
togram of Figure 16. From this figure, one can see that the optimal control strategy
yields orthogonal viewing angles more often than collinear viewing angles, which
occur either when γ “ 0˝ or γ “ 180˝. Even so, while orthogonal viewing angles
occur nearly twice as often as γ “ 0˝ with the optimal coordinated control policy,
they are only 23% more frequent than γ “ 180˝. Additionally, the distribution is
not nearly an impulse function at γ “ 90˝, as would be achieved in an ideal setting
with coordinated standoff tracking. In fact, the mode of the distribution occurs
near γ “ 111˝. Moreover, we conclude that viewing angle coordination is certainly
facilitated by the optimal policy but is not necessarily a dominant behavior.

We now assess the level of distance coordination achieved by the optimal pol-
icy in comparison with the uncoordinated strategy. To do this, we have smoothed
the scatterplot data of the 15.05 million UAV distance pairs to estimate the joint
probability density function of planar UAV distances for each control strategy.
The results are provided in Figure 17. The joint density function corresponding to
uncoordinated policies in Figure 17a is nearly circular around pρ1, ρ2q “ p80, 80q,
which is not surprising since we expect the uncoordinated policies to be equiva-
lent to statistical uncorrelation. However, the joint density function corresponding
to the optimal policy in Figure 17b is significantly elongated and shows strong
anti-correlation, which indicates that when one UAV is far from the target, the
other is most often fairly close to the target. These plots also show that uncoor-
dinated policies generally keep each UAV’s distance below 115 meters while the
optimal coordinated policy keeps each UAV’s distance below 140 meters, as indi-
cated by the maximal values of ρ1 and ρ2 associated with the turquoise regions
of the probability density estimates. This demonstrates the desired effect of the
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Fig. 17 Joint probability density of UAV distances ρ1 and ρ2, as determined through Gaussian
kernel smoothing. The heat maps range from dark blue to dark red, corresponding to low and
high density regions, respectively. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

barrier function of Section 4.3, which becomes active beyond a planar distance
of 140 [m] in the computation of the optimal coordinated policy and thus deters
individual UAVs from wandering unnecessarily far from the target. Overall, while
intuition suggests that minimizing each UAV’s individual worst-case distance from
the target might be the best strategy based on the fused covariance’s sensitivity to
distance, it is the coordination of distances that yields optimal performance since
Figure 14 is effectively the projection of the two dimensional plots in Figures 17a
and 17b into one dimension based on the tracepPq functional. Hence, from this
test, we conclude that the coordination of distances is the predominant behavior
of the optimal control policy.

6 Conclusion

We have presented and studied an effective solution to the problem of optimally
coordinating two fixed-wing UAVs to gather the best joint vision-based measure-
ments of a randomly moving ground target. An analytic expression was utilized
for the fused geolocation error covariance (GEC) associated with the vision-based
measurements, and stochastic fourth-order models were employed for all vehicles
to capture realistic system dynamics. While this degree of realism is desirable from
a practical point of view, it also renders a 9-dimensional stochastic optimal con-
trol problem for which grid-based solutions are impractical. Hence, we presented a
simulation-based policy iteration technique known as regression Monte Carlo and
adapted it into a policy generation algorithm to remove the need and influence of
the initial policy map. To promote fast, reliable regression, we used a partitioned
robust regression scheme that utilizes `1-regularized quadratic fits; as a result,
the technique achieves spatial adaptivity and robustness to process noise while
capturing nonlinearities in the Q-value.
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We conducted a thorough study of the performance and nature of the optimal
control policy. When compared with uncoordinated policies, the optimal coordi-
nated policy was shown to achieve lower average costs with a significant reduction
in the variance of these costs. Hence, the optimal control policy achieves perfor-
mance that is not only improved, but also much more predictable. When compared
with ideal standoff tracking costs determined for a constant-velocity target at vari-
ous speeds, both the ensemble average of the optimal policy’s costs in steady state
and the mean value of its time-averaged costs were shown to be significantly lower.
This can be explained by the fact that standoff tracking does not take advantage
of the two most dominant of the three factors that determine fused GEC, namely
each UAV’s planar distance from the target. Moreover, while certain applications
might require a minimum standoff distance, the degradation in tracking perfor-
mance with vision sensors is substantial and perhaps warrants the use of larger
UAVs that can carry heavier, active sensors, e.g., radar.

While the optimal policy was shown to facilitate angle coordination to a slight
degree, the stronger, more pronounced behavior was shown to be the coordination
of distances to the target. The associated optimal trajectories comprise a rich
mixture of sinusoidal and orbital trajectories that occasionally pass over or near the
target. These behaviors differ both from the standoff tracking approaches that aim
to achieve coordinated orbital trajectories centered at the target and the heuristic
approaches of [19] and [20] that aim to achieve out-of-phase sinusoids passing
over the target. Furthermore, distance coordination is achieved in the presence
of stochastic target motion, thereby offering a significant advantage. Nonetheless,
should one design a heuristic controller for a multi-UAV target tracking application
wherein a minimum standoff distance is not necessary and the cost is analogous
to the fused GEC, one should focus on distance coordination rather than viewing
angle coordination.

On a final note, we mention that in practice a target’s motion may be deter-
ministic over long time intervals, e.g., constant velocity, or it may have a fixed,
deterministic control policy. So long as the target’s motion respects the dynamical
constraints of Section 2.3, such as maximum acceleration and maximum turn rate,
it can be viewed as a realization of the stochastic process, albeit with very low
probability. Moreover, the stochastic optimal controller is robust to any motion
that can be explained by the stochastic model presented in Section 2.3. Of course,
the controller is no longer necessarily optimal, since, for example, a constant-speed
target that is turning at a constant rate deviates from the zero-mean assumption
on the turn rate distribution. If one wished to play optimally against a given tar-
get policy, then one would have to either know and plan according to the policy
a priori or learn the target’s policy online. While the former option is rather im-
practical, the latter is certainly possible, but it is nontrivial and hence the subject
of reinforcement learning [32]. Nonetheless, the present work provides robustness
to a wide range of target motion encountered in practice.

One interesting topic for future work is that of using more than two UAVs to
track multiple targets. Works that address multi-target tracking include [14] and
[33], which typically rely on heuristics to form suboptimal, but computationally
tractable, solutions. Using cost function simplifications and computational reduc-
tions from symmetry, the present approach could almost certainly be extended to
the problem of tracking with three UAVs, which would prove useful for analyzing
the return on investment for adding individual agents. Since the computational
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demand of the regression scheme presented here grows exponentially in the state
space dimension, one would likely need to consider another form of regression. One
promising approach is an adaptive RMC approach presented in [34] that adds sam-
ples to the stochastic mesh in areas that yield the greatest expected improvement
to the quality of the fit until some threshold is met. Moreover, the number and
location of points in the stochastic mesh is selected automatically while Bayesian
tree-based regression allows for the fits to be updated recursively and the result-
ing quality assessed. To track multiple targets, a clustering algorithm, such as that
presented in [33] for tracking groups of targets traveling in close proximity to one
another, could be used to track distinct groups of targets using teams of either
one, two, or possibly even three UAVs.

As practical models that have been proven in the field were employed for the
UAVs, a natural next step involves testing the optimal control policy in the field
to validate its performance. One real-world condition not addressed in this work is
wind, yet light to moderate steady winds can be merged with the target velocity
to form an apparent target velocity which can then be used in the feedback policy.
For more heavier, stochastic winds, one can incorporate wind velocity into the
system dynamics, though this would increase the dimensionality of the problem.
Nonetheless, since the problem is still tractable with RMC and because wind can
play a significant role in the performance of small UAVs, this also remains an
open area for future work. Lastly, since the aim of this work is to reduce the error
of the vision-based position measurements and thereby facilitate more accurate
reconstructions of the full target state with a filter, future work involves testing
how the policy affects state estimates from filters such as a particle filter or the
robust filter of [35].
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8 Appendix: Exploiting Symmetry for Computational Savings

When performing modified RMC, one can exploit key symmetries in the problem
to reduce the computational effort considerably. Firstly, the Q-value is symmetric
about the relative x-axis in the target-centric state space Z. To describe this,
we introduce the reflection matrix R “ diagpI2ˆ2 b R, 1q P R9ˆ9, where R “

diagp1,´I3ˆ3q P R4ˆ4. This matrix simply comprises 2 copies of the matrix R and
unity in a block diagonal fashion. By multiplying the state vector z P Z by the
reflection matrix, we reflect the relative poses of both UAVs simultaneously about
the relative x-axis in the target-centric state space.

Taking note of dynamical symmetry, we have that ppz1 |z,uq “ ppRz1 |Rz,´uq.
This simply states that the dynamics of the UAV’s pose relative to the target are
symmetric about the relative x-axis. Furthermore, since simultaneously reflecting
all UAV poses preserves both the UAV-target distances as well as the separation
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viewing angle γ, gpzq “ gpRzq. Combining these two properties in (10) yields
Qpz,uq = QpRz,´uq. Moreover, from (11), we have that

µ˚k pzq “ ´µ
˚
k pRzq,

which we henceforth refer to as the reflection property.
One can combine the reflection property with two-UAV symmetry for substan-

tial computational savings. By two-UAV symmetry, we mean the property that
one can simply relabel the UAVs to account for all possible state configurations
when evaluating the cost-to-go. Note that this practice is in reality an approxima-
tion since the UAVs operate at different altitudes, although its effects are minor
since the altitude difference is small in comparison to either of the altitudes. As
an example of the two-UAV symmetry, the set of roll-angle pairs C can be defined
as

C :“ tr P C2 : r1 ě r2u.

Thus, with nc “ |C| “ 5 and Nc “ |C|, the total number of roll-angle pairs that
needs to be considered has been reduced from Nc “ n2c “ 25 to Nc “ ncpnc `

1q{2 “ 15, which is a significant reduction in the computational requirements of
Algorithm 3.

Also, as mentioned in Section 5, the partitioning of the relative position states
for regression is done approximately in quadrants. With two UAVs, we enforce
the position states to be partitioned as quadrants a priori and ensure that m

Monte Carlo samples from the initial condition set X exist in each quadrant,
where m is the number of samples per regression partition. With this setup, there
are initially 42

“ 16 possible combinations of quadrants (corresponding to the
position states) wherein one needs to perform regression. However, by applying the
reflection property, one can eliminate performing regression in the following pairs
of quadrants: p3, 3q, p4, 4q, p4, 3q, p3, 4q, p2, 4q, and p4, 2q. Hence, one can eliminate
at least 6L3L6L7Nrm “ 2880m Monte Carlo simulations, which is considerable
since m is typically on the order of 104.
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