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Abstract

We consider the problem of optimal switching with finite horizon. This special case

of stochastic impulse control naturally arises during analysis of operational flexibility

of exotic energy derivatives. The current practice for such problems relies on Markov

decision processes that have poor dimension-scaling properties, or on strips of spark

spread options that ignore the operational constraints of the asset.

To overcome both of these limitations, we propose a new framework based on re-

cursive optimal stopping. Our model demonstrates that the optimal dispatch policies

can be described with the aid of ‘switching boundaries’, similar to standard Ameri-

can options. In turn, this provides new insight regarding the qualitative properties

of the value function.

Our main contribution is a new method of numerical solution based on Monte

Carlo regressions. The scheme uses dynamic programming to simultaneously ap-

proximate the optimal switching times along all the simulated paths. Convergence

analysis is carried out and numerical results are illustrated with a variety of concrete

examples. We then benchmark and compare our scheme to alternative numerical

methods. On a mathematical level, we contribute to the numerical analysis of re-

flected backward stochastic differential equations and quasi-variational inequalities.

The final part of the dissertation proposes fruitful extensions to tackle other financial

problems such as gas storage, exhaustible resources, hedging supply guarantees and

energy risk management.
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Chapter 1

Introduction

This dissertation is concerned with finding optimal policies for exercise of operational

flexibility over energy assets. This is one of the fundamental problems faced by

participants in the emerging energy markets. To reduce the large liquidity risk

present in these markets trading firms are increasingly seeking control of generating

assets like power plants or gas storage facilities. The ownership is transferred by

signing temporary lease agreements and it is of interest to efficiently value and hedge

such tolling contracts given the volatile gas and electricity prices.

In this work to solve the outlined problem we adopt a framework of stochastic

control in continuous time. The commodity prices are modelled as stochastic pro-

cesses and the owner exercises her managerial options by controlling the production

mode of the asset. This approach was pioneered by Brennan and Schwartz [13] over

twenty years ago, but only recently received attention. However, the dynamic setting

is the only way to fully capture the interplay between flexibility and uncertainty. The

method is technical, but the intuitiveness is not lost. We obtain explicit results which

have simple interpretations and lend themselves well to practical implementations.

Our key insight is that optimal switching is a special case of stochastic impulse

control that is efficiently reduced to a series of recursive optimal stopping problems.

1
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At any given instant in time, the optimal policy is determined by the simple decision

between ‘continue in the same production regime’ and ‘switch to the best alternative’.

From this idea, we develop a new numerical algorithm based on Monte Carlo simu-

lations and Dynamic Programming. Our main motivation is robust implementation

and applicability to a wide range of financial engineering settings.

Besides a numerical scheme, the second contribution of this work is a new qual-

itative analysis of optimal switching. Under conditions to be specified later on, we

prove that the optimal switching decisions can be fully described with the aid of

switching boundaries. These boundaries are smooth and divide the state space into

connected components. Our analysis is entirely probabilistic, avoiding the difficulties

of the traditional quasi-variational framework. In particular, we do not make any

ad hoc guesses about the optimal policy. Instead we rely on the theory of reflected

backward stochastic differential equations and the new technique of maturity ran-

domization. Maturity randomization studies finite horizon problems as limits of an

iterative sequence of infinite horizon ones and naturally fits in our framework.

Compared to existing literature, we consider more general stochastic price pro-

cesses and more importantly look at finite horizon problems. Rather than valuing

a project on an infinite time interval, we concentrate on contracts with fixed expiry

dates. This is closer to reality but makes the problem much more difficult. Time has

to explicitly enter into all the calculations and time decay may become significant.

To the best of our knowledge this work is the first to apply continuous time

impulse control in the context of tolling agreements for energy assets. Accordingly,

we highlight the differences and advantages of our model versus existing methods in

a variety of numerical and qualitative examples. We especially concentrate on the

strip of options approximation that is widely used nowadays by practitioners.

The organization of this thesis is as follows. Chapter 2 begins by introducing the

financial motivation for our problem and carefully formulating the precise mathe-
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matical framework. We then proceed to Chapter 3 which presents the main concept

of converting optimal switching problem into recursive optimal stopping. Building

on the basic Theorems 1 and 2 we then discuss the analytical properties of the

value function. The chapter ends by recalling the alternative approaches based on

quasi-variational inequalities and backward stochastic differential equations and the

additional insights they provide.

Chapter 4 is the backbone of this dissertation and describes the numerical ap-

proach we use to solve the problem. The main regression-based dynamic program-

ming algorithm is presented in Section 4.1. In Section 4.3 we then systematically

discuss convergence issues with separate analysis of each source of error. Moving

on to practical issues, Section 4.4 provides several representative examples and Sec-

tion 4.5 compares our algorithm to alternative numerical methods. In a different

vein, Section 4.7 discusses the differences of our framework versus approaches cur-

rently in use by practitioners.

The final Chapter 5 is devoted to extending our framework to additional cases of

interest. We begin by discussing a model of gas storage in Section 5.1. While similar

to dispatch of a power plant, this problem has past-dependent state variables that

complicate implementation. We propose two possible solutions in Section 5.1.1 and

compare their performance on a couple more examples. Gas storage naturally leads

to other generalizations. Specifically, we discuss supply guarantees in Section 5.2, ex-

haustible resources in Section 5.3, and nonlinear risk preferences in Section 5.5. The

last extension in turn leads to a new proposal in Section 5.6 for integration of intrin-

sic risk preferences and vanilla instruments with managerial flexibility. Combined

we obtain a risk management framework that brings us full circle and allows us to

resolve both pricing and hedging of tolling agreements. The concluding Section 5.7

summarizes our work and discusses avenues for further research.



Chapter 2

Problem Setup

2.1 Tolling Agreements

The energy industry is fundamentally very capital intensive with project costs of

seven or eight digits. A typical fossil fuel power plant costs in the hundreds of

millions of dollars and may take three to five years to build. Oil refineries or gas

storage facilities also require enormous capital outlays. As a result, the physical stock

is owned by a few very large firms whose expertise is in building and maintaining

the infrastructure. From a financial point of view however, energy assets are really

a play on the spread between two different commodities. To put it another way,

energy assets are simply black boxes that convert a fuel commodity into another

fuel commodity. Thus, a power plant converts gas or oil into electricity, a refinery

converts crude oil into gasoline and jet fuel, and a storage facility converts gas today

into gas six months from now.

Because energy markets are not sufficiently liquid and efficient, access to the

physical ‘equipment’ has extra benefits that cannot be attained otherwise. In partic-

ular, many commodity contracts require physical settlement which necessitates ac-

tual ownership of an asset. Consequently, many energy trading firms have a vested

4



5

interest in owning energy assets. To circumvent the capital intensive side of the

business, the idea of a tolling agreement was invented.

For a trader, a tolling agreement is a call on power with a gas-linked strike

price. Thus, if the gas/power spread is large enough, the trader will run the plant

turning a profit. In general, the buyer has the right to plant output at his discretion,

subject to pre-specified exercise rules. Since the latter can be quite complex, for

our purposes a tolling agreement is simply any temporary contract between the

permanent owner of an asset and another agent that allows that agent to claim

ownership and management of the output. In short, the agent ‘rents’ the asset from

the owner. The arrangement permits the owner to concentrate on maintenance and

development while allowing the agent to hedge and/or speculate in the gas and power

derivatives markets.

Tolling agreements come in a variety of shapes and flavors. Being a structured

deal, each contract is different and uniquely tailored to the participants’ needs. There

even exist reverse tolls which allow power producers to virtually convert their elec-

tricity back into gas. In this thesis we abstract from the specifics and concentrate

on the optimal behavior of the renter in a general mathematical framework. For

concreteness, from now on we discuss the case of a tolling agreement for a gas-fired

power plant in a de-regulated market. The agent is exposed to fluctuating fuel and

electricity prices and would like to derive the maximum value from the plant. This is

achieved by optimizing the dispatching policy, i.e. deciding when the plant is running

and when it is offline. These decisions are made dynamically, as time and market

conditions evolve. We shall assume that the market is infinitely liquid and the agent

is a price taker, so that her actions do not have any effect on the prices. The last

assumption is very strong, however very few financial models can take into account

price impact in a succinct manner.
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2.2 Operating Strategies

Consider an operator in charge of a peaking combined cycle gas turbine (CCGT)

power plant. This is a medium size new technology power plant characterized by

short ramping times. Hence it only takes 2 − 4 hours to bring the plant online, in

contrast to baseload units that require days of powering up. Several hundred of such

units have been built in North America with typical capacity of 40 − 200MWh. As

the name suggests, a CCGT plant is made up of several gas-fired turbines that allow

for variable levels of output.

If the operator wishes to run the plant, she buys natural gas, converts it into

electricity and sells the output on the market. The conversion ratio is called the heat

rate. More precisely, the heat rate HR specifies the number of millions of British

thermal units (MMBtu) of gas needed to produce one megawatt-hour MWh.1

Thus, the higher the heat rate the less efficient the conversion. Typical heat rates

are about 9 − 12MWh/MMBtu. To formulate the financial setting, let (Pt) be the

price process of electricity, (Gt) be the price process of gas, K the operating costs

and Cap the capacity of the plant. We remain vague about the precise meaning of

(Pt) and (Gt). They could be spot prices, but they could also very well be day-ahead

prices if all the commitments are made on a 24-hour basis. The revenue rate from

running the plant is then given by the spark spread, Cap · (Pt −HR ·Gt −K) · dt. In

other words the spark spread pays the difference between the market price of power

and the market price of gas needed to produce this power. The remaining margin,

which may be negative, is the current economic rent of owning the plant.

Suppose that besides running the plant at full capacity with heat rate HR or

keeping it completely off-line, there also exist a total of M − 1 intermediate oper-

ating modes or regimes, corresponding to different subsets of turbines running. In

1In Europe, heat rates are quoted in megawatt-hours per giga-joule GJ. We use the American
units.
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principle, the plant may have a continuous spectrum of operating regimes. However,

some specific output levels are likely to be more operationally stable so that our

model is an acceptable simplification. To each mode we associate the corresponding

marginal heat rate HRi, such that they are ranked in increasing order of inefficiency,

0 = HR0 6 HR1 6 HR2 6 . . . 6 HRM ,
∑

iHRi = HR. The marginal benefit is

always decreasing, causing dis-economies of scale. One reason this happens is due

to increasing losses from heat dissipation. Each mode also has its own rate of O&M

costs Ki. The rate of payoff in regime m is then given by

ψm(Pt, Gt)
M
= Cap

(m

M
· Pt −

m
∑

i=0

HRi ·Gt −Ki

)

. (2.1)

In general, we denote by Xt = (Pt, Gt) the stochastic R
2-valued driving process and

by ψm(t,Xt) the respective payoff rates. Subject to integrability conditions to be

specified later on, ψm is allowed to be any time dependent Lipschitz-continuous func-

tional on the domain of (Xt). In particular, ψm might incorporate time discounting

at some rate r. However, to avoid clutter from now on we will not write out explicitly

either e−rt or the Ki’s.

Changing an output level is costly. It often requires extra fuel and various over-

head costs. Moreover, decisions must be synchronized to ensure operational stability.

For ease of presentation, let us assume that the startup and shutdown costs are equal

to C for each unit, so that the cost of switching from mode i to mode j is C|i− j|.

At this point we ignore the time delay effect of having to gradually ‘ramp-up’ and

‘ramp-down’ the turbine, an issue that we revisit in Section 4.1.1. In the general

setting we will also write Ci,j and we can even allow dependence on time and cur-

rent state Ci,j(t,Xt). The switching costs are discrete with Ci,j > ε > 0, for all

i, j and satisfy the triangle inequality Ci,j 6 Ci,k + Ck,j for any intermediate regime

k. We further assume that the cost of not running a plant is zero. Fixed expenses

are ignored because those are deterministic sunk costs representing an additional

component of being an operator and must be paid regardless of dispatching policy.
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The problem we shall investigate consists of optimal use of the power plant on a

finite time horizon [0, T ]. We have in mind a relatively short time period, such as

six months or at most a year. The optionality of running the plant comes only from

startup/shutdown decisions. Thus, the operating strategies in our setting consist of

the double sequences u = (ξ, T ) where ξk taking values in ZM
M
= {0, · · · ,M − 1}

are the successive modes chosen by the strategy u and 0 6 τk−1 6 τk 6 T are

the switching times. Since the only observable is (Xt) itself, we require τk to be

FX-stopping times, where FX
t = σ(Xs : 0 6 s 6 t) is the filtration generated by

(Xt). In general, several successive switches are allowed so that τk = τk+1 is possible.

However, due to the assumption made in the previous paragraph about subadditive

costs, multiple instantaneous switches are suboptimal. Note that this assumption is

without loss of generality because one can simply re-define Ci,j = mink(Ci,k + Ck,j)

without changing the structure of the problem. Consequently, one can think of u

as an FX-adapted piecewise-constant and càdlàg (right-continuous with left-limits)

process where us denotes the operating mode at time s. The jumps of u are precisely

described by τk. The total reward up to fixed final time T for such control u is

H(x, i, [0, T ];u)(ω)
M
=

∫ T

0

ψus(s,Xs) ds− C

∫ T

0

|du|s, X0 = x, u0 = i. (2.2)

The second term above is a convenient shorthand notation for counting the cumu-

lative switching costs corresponding to u. In full generality it should be written as
∑

τk<TC(uτk−, uτk
; τk, Xτk−) which we find too cumbersome. Observe that the re-

ward functional H(x, i, [0, T ]; ·) is time additive which will be crucial for structural

properties of the problem.

2.3 Control Problem

Let (Ω,F ,F = (FX
t ),P) be a stochastic basis. As usual in finance, the measure P

corresponds to the risk-neutral valuation measure. Let U (respectively U(t)) be the

set of all acceptable controls on [0, T ] (resp. on [t, T ]). It consists of all adapted
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càdlàg ZM -valued processes u of a.s. finite variation on [t, T ]. The last condition

means that we require the number of switches to be finite almost surely. Thus,

there exists a random integer NT = NT (u) such that τNT
= T . Alternatively,

P[τn < T ∀n > 0] = 0. This restriction is superfluous if the expected maximum

gain is finite a.s., P
x[

∫ T

0
maxi ψi(s,Xs) ds = +∞] = 0. Indeed, for any strategy

u, on the set Au
∞

M
= {NT (u) = ∞} the switching costs are infinite, and hence

H(x, i, [0, T ];u) = −∞ on Au
∞. As a result if P

x(Au
∞) > 0 then the mean expected

loss from strategy u is infinite and the latter is clearly not optimal. We conclude that

only strategies u for which P
x(Au

∞) = 0 need to be considered. From an economic

perspective the assumption also makes a lot of sense— switching a plant a thousand

times a day is impossible.

The optimal switching problem we will investigate may now be rigorously written

as finding

J(t, x, i) = sup
u∈U(t)

J(t, x, i;u), (2.3)

where J(t, x, i;u)
M
= E

[

H(x, i, [t, T ];u)|Xt = x, ut = i
]

.

In full,

J(t, x, i) = sup
u∈U(t)

E

[

∫ T

t

ψus(s,Xs) ds−
∑

t6τk<T

C(uτk−, uτk
)
∣

∣

∣
Xt = x, ut = i

]

. (2.4)

In Section 3.3 we will impose further conditions on the ingredients and verify that

the above control problem is sensible. In words, J(t, x, i), which is called the value

function, is the conditional maximum expected value for running the plant on [t, T ]

given the initial value of Xt = x and the initial regime ut = i. In economic terms,

J(t, x, i) represents the net present value of all future profit flows given optimal

behavior henceforth. Our goal is to numerically compute the value function J(t, x, i),

describe its qualitative properties and characterize the optimal switching policy u∗ =

(ξ∗, T ∗), if one exists, that achieves the supremum in (2.4). The last item is crucial
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for practical applications where the agent needs an easily implementable dispatch

strategy.

Mean Reversion and the Spark Spread

In contrast to most existing finance literature, our main case of interest is a mean-

reverting driving process (Xt). Indeed, unless (Xt) is mean-reverting and recurrent,

the problem will become degenerate as the drift would eventually make one regime

preferable to all the rest. Furthermore, for our problem, empirical data [27, 38]

strongly suggest that the spark spread Pt − HR · Gt is stationary and fluctuates

around its long-term mean corresponding to the average flow of economic rent from

a power plant.

An abbreviated alternative that will be used for some of our illustrations is to

assume that (Xt) is one-dimensional. This corresponds to direct modeling of the

spark spread, see for example [15]. In that case we will assume that the payoff rates

are of the form ψm(Xt) = m ·Xt −
∑m

i=0 βi ·Kg where β0 = 0, β1 > . . . > βM . This

is the one-dimensional analogue of decreasing efficiency of production.

2.4 Relation to Existing Literature

Optimal switching is a rather old problem that has been studied by both economists

and mathematicians. Mathematically, it is a special case of impulse control and the

latter has been extensively analyzed since late 1970s. We review relevant results in

this direction in Section 3.6. Economically, several other financial applications have

been looked at. The largest body of related literature treats problems of partially

reversible investment encountered in real options. In this setting the agent is a firm

facing several investment projects with uncertain dynamic value (Xt) that it can

start and suspend. The control is therefore composed of investment times τk and

choice/size of project to start ξk. For example, such optimal capacity management
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by an industrial firm has been studied by A. Øksendal [60] and extended to the case

of partial disinvestment by Guo and Pham [43].

Another related problem is optimal dividend payout by a corporation. Given

stochastic firm value (Xt), the objective is to find the best method of distributing

the wealth to shareholders. Thus, the controls are dividend times τk and dividend

amounts ξk. Mathematical treatment of this problem first appeared in Jeanblanc

and Shiryaev [48]. Extensions including non-zero recovery at default and mean-

reverting (Xt) have been recently studied by Boguslavsky [9] and Cadenillas et al.

[14] respectively.

Directly related to our setting we should foremost mention the recent work by

Hamadène and Jeanblanc [44]. Their probabilistic approach has been the inspiration

for this research. However, in their model there are only two operating regimes and

they spend little time discussing numerical implementation. The traditional varia-

tional approach to optimal switching originated with Brekke and Øksendal [12] who

considered a geometric Brownian motion for (Xt) and infinite horizon. Another sim-

ilar work is by Yushkevich [71]. He considers the switching problem in discrete time

for a general recurrent Markov chain with countable state space. Again, there are

only two regimes and no running rewards which allows for geometric characterization

of the value function.

The original paper on using stochastic control for commodity asset dispatch is

due to Brennan and Schwartz [13]. They used the methodology to price a copper

mine, once more with geometric Brownian motion for commodity price (Xt). Further

extensions such as abandonment and initial start decisions have appeared in a series

of recent papers by Zervos and various co-authors [28, 57, 72].

From an economic perspective, the thrust has been to show that stochasticity

of the (Xt) state process together with positive switching costs cause investment

delay and the appearance of the hysteresis band [26]. This means that the owner
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will forgo possible small gains (or respectively suffer small losses) due to the large

outlay required to make a switch. Thus, an operator may continue to run a plant at

a loss if he has enough hope that the prices will soon increase. Similarly, once prices

are on the rise, the manager will be reluctant to bring the plant online immediately,

delaying his decision. Overall, the fixed switching costs in the face of uncertain

revenue streams induce risk-aversion and reduce net present value (NPV). There is

also a competing effect, termed the timing option [1, 28]. Because the manager is

able to time his decisions he can minimize his losses in unfavorable conditions, as well

maximize them in good ones. As a result he derives extra benefits that essentially

correspond to the time premium for American option rights and are often a crucial

ingredient of the project NPV.

With the exception of Hamadène and Jeanblanc [44], all other ‘mathematical’

papers mentioned so far concentrate on explicit solutions and restrict their attention

to infinite horizon and one-dimensional time-homogeneous diffusions for (Xt). By

abstracting to these stylized setting, it is possible to find analytical solutions which

are used to demonstrate key features. However, the shortcoming is that most models

are impractical, and it is not clear how to implement them in a real-life situation.

One of the motivations behind this thesis was to redress this problem and focus on

numerical robustness and scalability.



Chapter 3

Recursive Optimal Stopping

3.1 Setup and Assumptions

We begin by stating the technical setup we will work in. For our driving process we

take (Xt) to be an Itô diffusion1 on an open subset E ⊆ R
d. We do not specify here

boundary conditions and our typical space is in fact the entire R
d. In that case the

dynamics of (Xt) are representable by a stochastic differential equation (SDE)

dXt = µ(Xt) dt+ σ(Xt) · dWt, (3.1)

where Wt is a standard Wiener process on (Ω,F,F,P). The filtration F is Brownian

and satisfies the usual conditions. We assume that F0 is trivial and our initial laws

are always deterministic point-masses at some x giving rise to conditional proba-

bility laws P
x. We will write (X t,x

s ) to indicate the process conditional on Xt = x.

Moreover, we make a standing assumption that the transition law Pt(x, y) of (Xt)

is non-degenerate in the entire domain:
∫ ∞

0
Pt(x, y) dt > 0, ∀x, y ∈ E. As usual,

E is equipped with its Borel σ-algebra B(E) and regularity implies that the former

coincides with the intrinsic topology of (Xt). For vector norm we use the Euclidean

‖x‖ =
∑

i x
2
i .

1Generalizations are possible, see Section 5.4.

13



14

Throughout we assume that the SDE (3.1) is non-degenerate, i.e. the eigenvalues

of σ(x) are bounded away from zero, infx∈E |λmin(σ(x))| > 0, and has a unique strong

solution. One sufficient condition is for µ and σ to be locally Lipschitz:

‖µ(x) − µ(y)‖ + ‖σ(x) − σ(y)‖ < KN ‖x− y‖, ∀‖x‖, ‖y‖ 6 N. (3.2)

Both µ and σ can be time dependent and we suppress dependence on t purely for

convenience. Let

S
p
T

M
=

{

Z : Zt ∈ Ft, E sup
t∈[0,T ]

|Zt|p <∞
}

, p > 1. (3.3)

We then make

Assumption 1. For all m, the reward function ψm : [0, T ] × E → R is Borel, con-

tinuous and locally Lipschitz in (t, x). Furthermore, ψm(·, X·) ∈ S 2
T .

The last condition is satisfied, for instance, if (Xt) ∈ S 1
T and all the rewards are of

quadratic growth, |ψm(t, x)| < C(1 + ‖x‖2).

Our canonical example for (Xt) is a d-dimensional exponential Ornstein-Uhlenbeck

process, namely

dX i
t

X i
t

= κi(θi − logX i
t) dt+ Σ · dWt, i = 1, . . . , d, (3.4)

or d(logX i
t) = κi(θi − σ2

i

2κi
− logX i

t) dt+ Σ · dWt, X i
0 = xi,

where Wt is a d-dimensional Brownian motion and Σ ∈ R
d×d is a constant non-

degenerate volatility matrix. Thus, the dependence between the components of (Xt)

is only through the correlation in the driving Wiener process. The attractiveness

of this model is that logXt is Gaussian and allows for explicit calculations, see

Sections 3.5 and 4.8.

3.2 Snell Envelopes

Instead of directly solving the impulse control problem in (2.4) we shall construct

a recursive solution using the concept of Snell envelope for optimal stopping. We
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begin with a quick review of the fundamental concepts. Our main references are El

Karoui [32] and Karatzas and Shreve [49].

Let Z be an R-valued càdlàg process adapted to the filtration (Ft) with square-

integrable supremum Z ∈ S 2
T . We emphasize that Z need not be Markov. For a

given stopping time ν, define Sν = {τ 6 T : F−stopping time such that ν 6 τ a.s. }

to be the set of all stopping times after ν. Thus, S ≡ S0 is the set of all F-stopping

times bounded by T .

Definition 1. Let (Xl, l ∈ L) be an arbitrary family of random variables. The

essential supremum of (Xl) is the unique random variable X = ess supl Xl such that

X > Xl a.s. for all l ∈ L, and X 6 Y a.s. for all random variables Y such that

Y > Xl a.s. ∀ l ∈ L.

Definition 2. A family (Xl, l ∈ L) of random variables is directed upwards if for

any pair (l′, l′′) of elements of L, there exists l ∈ L such that Xl > sup(Xl′ , Xl′′).

Armed with the above notions, for each ν ∈ S, we now define the nonnegative

random variable

Y (ν)
M
= ess sup

τ∈Sν

E

[

Zτ

∣

∣Fν

]

. (3.5)

It is easy to see that for any ν > τ

E
[

Y (ν)| Fτ

]

= ess sup
µ∈Sν

E[Zµ| Fτ ] 6 Y (τ),

so {Y (ν)} forms a supermartingale family. Moreover, this family is directed upwards

and is right-continuous in expectation and therefore [32] there exists a càdlàg F-

supermartingale Y r such that Y (ν) = Y r
ν , i.e. Y r stopped at time ν. The process Y r

is called the aggregating supermartingale of the family {Y (ν)}. Under the additional

assumption that Z is continuous from the left in expectation: τn ↘ τ =⇒ E[Zτn ] →

E[Zτ ], it can now be shown that the minimal optimal stopping time τ ∗ for Y (0)

exists and is explicitly given by

τ ∗ = inf
{

s > 0 : Y r
s 6 Zs

}

.
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That is, Y r
0 = E[Zτ∗ ] = supτ E[Zτ ]. Y

r is called the Snell envelope of Z and can be

further characterized as the smallest càdlàg supermartingale dominating Z. By a

basic comparison and Doob’s inequality,

E
[

sup
06s6T

|Y r
s |2

]

6 4 sup
06s6T

E
[

(Y r
s )2

]

6 4 E[(Y r
0 )2] 6 4 E

[

sup
06s6T

|Zt|2
]

<∞.

We therefore obtain a stability of the set S 2
T under the operation of Snell envelopes.

To understand the continuity properties of Y r, apply the Doob–Meyer decom-

position, Y r = M − A for some F-martingale M and F-predictable non-decreasing

process A. If Z has continuous paths, then so does A [49, Theorem D.13]. Further-

more, if the filtration (Ft) is Brownian, then the martingale M and therefore Y r

must also be continuous. More generally,

Proposition 1. [45, Lemma 1] Suppose Z is upper semicontinuous from the left and

of class [D] (that is {Zτ : τ ∈ S} is uniformly integrable) and (Ft) is a completed

Brownian filtration. Then Y r is continuous and of class [D].

This shows that if we want to preserve the continuity of the Snell envelope, we can

only allow positive jumps in the reward process. In any case, on [0, τ ∗) Y r is a

martingale and hence Aτ∗− = 0.

3.3 Recasting Optimal Switching as Iterative Op-

timal Stopping

We return to the optimal switching setting of Section 2.2. To begin solving (2.4) we

shall first consider a restricted situation where we put a fixed upper bound on the

total number of switches allowed. Define Uk(t)
M
= {(ξ, T ) ∈ U(t) : τ` = T for ` >

k + 1} to be the set of all admissible strategies on [t, T ] with at most k switches.

Denote by Jk the value function where we optimize only over Uk,

Jk(t,Xt, i) = ess sup
u∈Uk(t)

E

[

∫ T

t

ψus(s,Xs) ds−
∫ T

t

C |du|s
∣

∣

∣
Ft, ut = i

]

. (3.6)
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Since (Xt) is strong Markov the above definition makes sense and can be extended

for t being a stopping time. The existence of Jk as a measurable left-continuous

left-limited process of class [D] is shown by El Karoui [32, Theorem I.21].

It is intuitive that optimization over Uk+1 and over Uk should be related to

each other. In fact, by the formal Bellman optimality principle solving the problem

with k + 1 switches is equivalent to finding the optimal first switching time τ which

maximizes the initial payoff until τ plus the value function at τ corresponding to

optimal switching with k switches.

This train of thought leads us to the method of solving our switching problem

through a recursive sequence of simpler optimal stopping problems. More precisely

we are going to give an alternative recursive construction for Jk. Define Jk(t, x, i)

where k = 0, 1, 2, . . . , 0 6 t 6 T, i ∈ ZM , via

J0(t, x, i)
M
= E

[

∫ T

t

ψi(s,Xs) ds
∣

∣

∣
Xt = x

]

,

Jk(t, x, i)
M
= sup

τ∈St

E

[

∫ T∧τ

t

ψi(s,Xs) ds+ Mk,i(τ,Xτ )
∣

∣

∣
Xt = x

]

.

(3.7)

The recursion is hidden inside the operator M which is known in the literature as the

intervention operator. M specifies the best value that can be achieved by making

an immediate switch from current mode i given k switches remaining,

Mk,i(t, x)
M
= max

j 6=i

{

−Ci,j + Jk−1(t, x, j)
}

. (3.8)

If there are only two regimes like in Hamadène and Jeanblanc [44], the maximum

above is trivial, because there is only one regime to switch into.

We first verify that the definition of Jk is reasonable, i.e. that Jk can be chosen to

be (Ω×R+ ×E,F ⊗BR+
⊗B)-measurable. This is straightforward once we connect

to notation of Section 3.2. Pick an initial value X0 = x and observe that under

minimal regularity assumptions (3.7) is equivalent to

Jk(t,Xx
t , i)

M
= ess sup

τ∈St

E
x
[

∫ τ

t

ψi(s,X
x
s ) ds+ Mk,i(τ,Xx

τ )
∣

∣

∣
Ft

]

. (3.9)
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Let Ψi
t =

∫ t

0
ψi(s,X

x
s ) ds, Zk,i

t =
∫ t

0
ψi(s,X

x
s ) ds + Mk,i(t,Xx

t ). It is easy to see

that Zk,i satisfies all the regularity assumptions of Section 3.2. Then Y k,i, the Snell

envelope of Zk,i, solves Y k,i
t = ess supτ∈St

E
x[Zk,i

τ | Ft] and comparing with (3.9) we

see that

Jk(t,Xx
t , i) = Y k,i

t − Ψi
t.

This identification resolves all the measurability issues and moreover shows that the

optimal stopping time τ ∗k corresponding to the Snell envelope defined by Jk(t, x, i)

is simply τ ∗k = inf{s > t : Jk(s,Xs, i) = Mk,i(s,Xs)} ∧ T . Note that to ease on

notation we have labeled by Jk both the raw essential supremum and the aggregating

supermartingale of the Snell envelope, cf. (3.5).

Theorem 1. Jk is equal to the value function for the optimal switching problem with

at most k switches allowed, Jk.

Proof. The theorem states that a ‘global’ optimization using a fixed maximum of k

switches is equivalent to a successive ‘local’ optimization using one switch at a time

in (3.7).

Our proof is based on direct use of the properties of Snell envelope. We induct

on the number of switches left. The case k = 1 is immediate. Indeed, J1 is the

value function of a simple optimal stopping problem (all we can choose is (ξ1, τ1))

and similarly J1 is directly the Snell envelope of

ess sup
τ,j

E

[

∫ τ

t

ψi(s,Xs) ds− C|i− j| +
∫ T

τ

ψj(Xs) ds
∣

∣Ft

]

.

Next define τ ∗0 = 0, and for ` = 1, . . . , k the stopping times

τ ∗`
M
= inf

{

s ≥ τ ∗`−1 : J `(s,Xs, i) = max
j 6=i

(

−Ci,j + J `−1(s,Xs, j)
)

}

∧ T, (3.10)

and sequence of regimes ξ∗`
M
= arg maxj M`,i(τ ∗` −, Xτ∗

`
−). It is easy to see that by

‘unrolling’ the value functions Jk using the above (ξ∗, τ ∗) we obtain a well-defined

strategy u∗ ∈ Uk(t) for optimal switching with at most k switches. To show that this
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strategy dominates any other, let u = (ξ1, ξ2, . . . ; τ1, τ2, . . . , τk) be a given strategy

in Uk(t). Then by construction

Jk(t, x, i) > E

[

∫ τ1

t

ψi(s,X
t,x
s ) ds+ Mk,i(τ1, X

t,x
τ1

)
∣

∣

∣
Xt = x

]

(3.11)

> E

[

∫ τ1

t

ψi(s,X
t,x
s ) ds− C|i− ξ1| + Jk−1(τ1, X

t,x
τ1
, ξ1)

∣

∣

∣
Xt = x

]

,

but E[Jk−1(τ1, Xτ1 , ξ1)| Ft] = E[Jk−1(τ1, Xτ1 , ξ1)| Ft] a.s. by induction. Comparing

with (3.6), Jk > Jk(·;u) and since u was arbitrary, Jk > Jk. We also see that the

inequalities become equalities for (ξ∗1 , τ
∗
1 ) because τ ∗1 is the optimal time from the

Snell envelope characterization and Jk(s,X t,x
s , i) is a martingale on [t, τ ∗1 ]. Therefore

Jk(·;u∗) achieves the supremum in the impulse control problem (3.6). Observe that

as a corollary we obtain the existence of an optimal switching policy and a direct

proof that this policy is of the ‘barrier’ type—the optimal switching times are hitting

times for (Xt).

As the next theorem demonstrates, taking the limit k → ∞ in the number of

switches we recover the true value function.

Theorem 2. Define J(t, x, i) by (2.4) and Jk(t, x, i) by (3.7). Then limk→∞ Jk = J

pointwise.

Proof. Since having more switches is always advantageous, Jk+1 > Jk. At the same

time,

Jk(t, x, j) 6 E
x
[

∫ T

0

max
i

|ψi(s,Xs)| ds
]

<∞.

Therefore, the bounded monotone sequence Jk converges to some finite J∞. It

remains to show that J∞ = J . Let u∗ = (ξ∗1 , . . . ; τ
∗
1 , . . . ) be an optimal policy with

unlimited number of switches. Define u∗k(t) = u∗(t) if t 6 τ ∗k , and u∗k(t) = u∗(τ ∗k )

otherwise. That is, u∗k approximates u∗ up to the latter’s k-th switch and remains
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constant afterwards. Trivially, J∞(t, x, i) > J(t, x, i;u∗k). To bound the remainder,

observe that since a switch is made only if it increases expected value,

0 6 E

[

∫ T

τ∗
k

ψu∗
s
(s,Xs) ds−

∫ T

τ∗
k

C|du∗|s
]

6 E[T − τ ∗k ] · E
[

sup
06t6T

max
i

|ψi(t,Xt)|
]

.

Because by admissibility τ ∗k → T a.s., the right hand side converges to zero. Hence,

J∞(t, x, i) > limk→∞ J(t, x, i;u∗k) = supu∈U(t) J(t, x, i;u). This also shows that for

any ε > 0, there is a k large enough such that the optimal control of Jk generates

an ε-optimal strategy, a fact which is useful for numerical approximations.

Thanks to our recursive construction, it becomes clear that because (Xt) is

Markov, then the optimal policy can be chosen to be Markovian as well [53]. In-

deed, each switch by itself becomes Markovian in (3.10). In turn this implies that

the Dynamic Programming principle holds for the value function, i.e. with obvious

notation

J(t, x, i) = sup
u∈U(t,t′)

E
[

H(x, i, [t, t′];u) + J(t′, X t,x
t′ , ut′)

∣

∣Xt = x, ut = i
]

. (3.12)

The idea of representing impulse control problems as limits of sequential optimal

stopping has been well known for a long time, see e.g. [53, 62]. In the setting of

optimal switching some of the ideas appear in [44], however we believe our work is

the first careful formulation in purely probabilistic terms.

3.4 Exponential Maturity Randomization

In the previous section we have replaced a seemingly harder problem of optimal

switching with a sequence of simpler optimal stopping problems. We now take

a second step of replacing the harder problem with finite horizon by a sequence

of infinite horizon ones. Combined, the two methods allow us to give a unified

treatment of the general problem of optimal switching as an iterative system of

optimal stopping problems on infinite horizon. This conceptual reduction paves the

way for new qualitative results regarding the resulting value function.
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We introduce the maturity randomization method pioneered by Carr [18] and

recently put on firm ground by Bouchard et al. [10]. Instead of finishing at a fixed

time T , the contract is terminated at theN -th arrival, the time T̄N . Let σn denote the

inter-arrival times which are i.i.d. exponential random variables with mean 1/λ
M
=

T/N . Following the notation in [10] we count the σ’s backwards. Then T̄N =
∑N

n=1σn, and the new problem consists in optimizing over [0, T̄N ]. By the Law of

Large Numbers in the limit N → ∞, T̄N → T in L2 converging to the finite horizon

case.

The key feature of the construction is that the arrivals are observable but inde-

pendent of (Xt). To achieve this we redefine the big σ-algebra to be F = σ(F∞ ∨ I)

where I represents additional randomness. The inter-arrival times σi will be drawn in

an i.i.d. fashion from I. We have I ⊥⊥ F∞ and letting Tn =
∑N

i=N−n σi denote the n-

th arrival time, the observable filtration is changed to F̃t = σ
(

Ft

∨

n

�
{Tn6t}

)

. Hence,

at time t we know exactly how many arrivals have occurred. However, by the memo-

ryless property of exponentials, on each interval [Tn, Tn+1] we have time stationarity.

Overall, we have replaced the smooth but time-dependent switching boundary from

the finite horizon case by N constant boundaries, one for each [Tn, Tn+1]. This major

simplification is the raison d’être of maturity randomization.

To make everything precise we make explicit the (possibly random) horizon of

the problem, writing J(t, x, i;T ) for our old value function. Following [10] we now

define a new set of value functions as follows. Fix total number of arrivals N and let

Uk(t, v) be the set of all policies u that use at most k total switches and that agree

with policy v up to time t: us = vs, for s 6 t. Note that past history matters now,

and if we used up switches before, we have fewer left. For a strategy u ∈ Uk(0), let

V u
0 (t, x0, i)

M
= H(x0, i; [0, t];u) =

∫ t

0

ψui
(Xs) ds− C

∫ t

0

|du|s ∈ F̃t, cf. (2.2),
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and define recursively,

V v
n (t, x0, i)

M
= ess sup

u∈Uk(t,v)

E
[

V u
n−1(t+ σn, x0, i)

∣

∣F̃t

]

(3.13)

= ess sup
u∈Uk(t,v)

E

[

∫ ∞

t

λe−λ(s−t)V u
n−1(s, x0, i) ds

∣

∣F̃t

]

, n = 1, 2, . . . , N.

When t = 0, we just write Vn(0, x, i). The control problem for V v
n (t, x0, i) optimizes

over the random subinterval [t, t + σn] given past history of (Xt) up to t and given

that there are still n intervals to go. Note that the running payoff is encoded into

V v
n (t, x0, i) which is the sum of realized profit on [0, t] using the strategy v plus best

expected future reward until t +
∑n

i=1 σi. The initial condition X0 = x0 remains

constant and only the horizon is changing.

To state the main convergence result we make the following assumptions:

Assumption 2 (HU). Stability of Uk under bifurcation at deterministic times:

For any A ∈ Ft and v1, v2 ∈ Uk, v1 = v2 on [0, t) =⇒ v1
�

A + v2
�

Ac ∈ Uk.

Assumption 3 (HY). Possible rewards are always dominated: ∀u H(x, i; [0, t];u) 6

M̄t, where M̄ is a uniformly integrable martingale on [0,∞].

Assumption 4 (HV). There exists an aggregating (Ω × R+ × E,F ⊗ BR+
⊗ B)-

measurable version of V v
n .

Then under (HU), (HY ), and (HV ) [10],

J(0, x, i; T̄N) 6 VN(0, x, i) 6

∫

RN
+

J(0, x, i; σ1 + σ2 + · · · + σN)m(dσ) (3.14)

with equality in the limit N → ∞. This says that the recursively defined VN , which

consists of piecewise optimization on each interval [Tn, Tn+1] is better than direct

optimization on [0, T̄N ], but worse than pathwise optimization with respect to each

separate realization of the arrival process. The nontrivial part is proving that in the

limit the upper and lower bounds converge, squeezing VN . Note that the theorem

does not guarantee any monotonicity assumptions on the sequence VN , even though
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we intuitively expect that VN is eventually increasing in N , because having more

intervals is akin to ‘more information’ which should help the optimization.

Verifying the necessary hypotheses on (Xt) and admissible policies U is straight-

forward in our case of recursive optimal stopping. Indeed, (HU) is immediate for

optimal switching and the measurability hypothesis (HV ) follows directly from the

Snell envelope construction. The uniform integrability (HY ) follows if we assume

that E[supt maxm |ψm(t,Xt)|] <∞ on [0,∞].

In analogy with Section 3.3 we will now provide a second doubly recursive con-

struction in the number of switches k and the number of random time intervals

remaining n. To avoid confusion we relabel our value functions as V instead of J .

Suppose we are on the subinterval between TN−n−1 and TN−n, 0 < n 6 N so that n

arrivals remain before termination. Let ζ be the time of next arrival. Then ζ is an

exponential random variable with mean 1/λ, so that λ is interpreted as the rate of

‘dropping’ to the level below. Define

V n,k(t, x, i) = sup
τ∈St, j

E
[

∫ ζ∧τ

t

ψi(s,Xs) ds+ V n−1,k(ζ,Xζ , i)
�

ζ<τ

+ (V n,k−1(τ,Xτ , j) − Ci,j)
�

ζ>τ

∣

∣ F̃t, Xt = x, ut = i
]

= sup
τ∈St, j

E

[

∫ τ

t

e−λ(s−t)(ψi(s,X
t,x
s ) + λV n−1,k(s,X t,x

s , i)) ds

+ e−λ(τ−t)(V n,k−1(τ,X t,x
τ , j) − Ci,j)

∣

∣

∣
Xt = x

]

, (3.15)

V n,0(t, x, i) = E
[

∫ ∞

t

e−λ(s−t)(ψi(s,X
t,x
s ) + λV n−1,0(s,X t,x

s , i)) ds
∣

∣Xt = x
]

,

and V 0,k ≡ 0. The equality between two definitions in (3.15) follows by the mem-

oryless property of the exponentials. By analogy with before, we expect that V N,k

actually corresponds to the value function for optimal switching with at most k

switches allowed and ‘end-of-the-world’ at T̄N . Due to memorilessness, if we decide

to switch at time τ , the clock restarts and we are once again facing the problem of

optimal switching with n periods left and k − 1 switches.
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Theorem 3. The two methods (3.13) and (3.15) of optimizing over Uk, i.e. with at

most k switches allowed, are equal: Vn(0, x, i) = V n,k(0, x, i).

Proof. Conceptually this is a straightforward adaptation of the results in [10] for

the case of optimal switching, which is only slightly more general than the optimal

stopping considered there. The main notational difficulty is that the definition of V v
n

aggregates previous payoffs while V n,k only looks to the future. For u = (ξ, T ) ∈ Uk

their general relationship is

V u
n (t, x, i) = V n,k−kt(t,Xx

t , ut) +H(x, i, [0, t];u),

with kt =
∑

n

�
τn<t the (random) number of switches made by u up to t.

The proof is again by induction on k, n. The conditions are trivially satisfied

when n = 0 or k = 0. Suppose the result is true in Uk−1 with n periods and in

Uk with n − 1 periods. We will show it is also true in Uk with n periods. For any

u ∈ Uk(t, v) isolate out the first switching decision as

u =
{

(u1, u
′) : u′ ∈ Uk(τ1, v ∪ u1), u1(s) = u1(t) = v(t) for t 6 s 6 τ1

}

.

This just means that until τ1 we do not switch and then use u′. Now conditioning

on the order of ζ and τ1 we have

V v
n (t, x, i) = ess sup

u∈Uk(t,v)

E
[

V u
n−1(t+ ζ, x, i)

∣

∣ F̃t

]

= ess sup
u∈Uk(t,v)

E
[

V u
n−1(t+ ζ, x, i)

�
t+ζ6τ1 + V u

n−1(t+ ζ, x, i)
�

t+ζ>τ1

∣

∣ F̃t

]

.

(3.16)

For the second term we use the fact that conditional on ζ > τ1 − t, the distribution

of ζ is still exponential, due to the independence between I and F∞. Directly,

E
[

V u
n−1(t+ ζ, x, i)

�
t+ζ>τ1

∣

∣ F̃t

]

= E
[

∫ ∞

τ1

λe−λ(s−t)V u′

n−1(s, x, i) ds
∣

∣ F̃t

]

= E

[

E[

∫ ∞

τ1

λe−λ(s−τ1)V u′

n−1(s, x, i) ds| F̃τ1 ] · e−λ(τ1−t)
∣

∣F̃t

]

= E
[

V u′

n (τ1, x, i) · e−λ(τ1−t)
∣

∣ F̃t

]

. (3.17)
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The last step is justified by the continuity properties of the control problem for V v
n

which allows (3.13) to be extended for any F-stopping time τ using the standard

càdlàg modification arguments [32, p.99]. Since u′ uses one more switch than u we

can invoke the inductive assumption,

V u′

n (τ1, x, i) = V n,k−kt−1(τ1, X
x
τ1
, u′τ ) +H(x, i, [0, τ1];u

′)

=
{

V n,k−kt−1(τ1, X
x
τ1
, u′τ ) − Cut,u′

τ
+

∫ τ1

t

ψut(X
x
s ) ds

}

+H(x, i, [0, t];u).

As for the first term in (3.16), by invoking the inductive assumption with n′ =

n− 1, k′ = k we have

E
[

V u
n−1(t+ ζ, x, i)

�
t+ζ6τ1 | F̃t

]

= E
[

∫ τ1

t

λe−λ(s−t)V u
n−1(s, x, i) ds

∣

∣ F̃t

]

(3.18)

= E

[

∫ τ1

t

λe−λ(s−t)V n−1,k−kt(s,Xs, us) ds

+

∫ τ1

t

ψut(Xs) e−λ(s−t)ds+H(x, i, [0, t];u)
∣

∣ F̃t

]

,

where the last term is coming from
∫ τ1

t
λe−λ(s−t)H(x, i, [0, s];u) ds. Roughly speak-

ing, when t+ ζ < τ1, V
u
n (t+ ζ) is just optimizing in Uk(t+ ζ, u) with one less arrival

left. However, because ζ is independent from (Xt) we cannot apply the dynamic pro-

gramming principle at instant ζ and must resort to the explicit calculation above.

Comparing (3.16),(3.17) and (3.18) with (3.15) the induction is complete.

By an analogue of Theorem 2, the original value function J(t, x, i) equals to

lim
N→∞

lim
k→∞

V N,k(t, x, i). At the same time, if we set Rλf(x)
M
= E

x
[∫ ∞

0
e−λtf(Xt) dt

]

,

then (3.15) can be rewritten as

V n,k(t, x, i) = sup
τ∈St, j

E

[

e−λ(τ−t)
{

V n,k−1(τ,X t,x
τ , j) − Ci,j

−Rλ

(

ψi(s,X
t,x
τ ) + λV n−1,k(τ,X t,x

τ , i)
)

}∣

∣Xt = x
]

+Rλ

(

ψi + λV n−1,k(0, ·, i)
)

(x)

making it a standard optimal stopping problem for a stationary Markov process.

Hence, the entire well-developed theory for this field can be brought to bear. Es-
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pecially interesting is the connection between Snell envelopes and minimal excessive

majorants that we explore in in Section 3.6.1.

3.5 Regularity of the Value Functions

In this section we state several results on the regularity of J(t, x, i). Even though

the required conditions are increasingly restrictive, they still cover the situations of

practical interest. For a typical (Xt) think of an exponential of a linear diffusion,

either mean-reverting OU or Brownian motion with drift. A typical payoff rate would

be linear and increasing in the components of Xt.

Theorem 4. Suppose that (Xt) is an d-dimensional OU process of (3.4) and the

payoff rates ψi(t, x) are convex. Then the value functions J(t, x, i) are convex in x.

Proof. The key property we need is the linearity of the OU process,

Xx+εei
s = Xx

s + e−κisεei, where ei = (0, . . . , 0, 1, 0, . . .), (3.19)

with a one in the i-th position. We first prove the result assuming the payoff rates are

linear, whence we write them as ψi(s,Xs) = Ai ·Xs − ψ(s, i) for some set of (time-

dependent) vectors (Ai). Fix initial condition (x, i) and let ûx be the respective

optimal strategy in U(t),

J(t, x, i) = E

[

∫ T

t

[Aûx
s
·Xx

s − ψ(s, ûx
s)] ds−

∫ T

t

C|dûx|s
∣

∣Xt = x
]

. (3.20)

Without loss of generality we concentrate on the first component X(1) of (Xt). If

we perturb the initial condition in the X(1) direction via X0 = x+ εe1, û
x is still an

acceptable strategy to use, so that

J(t, x+ εe1, i) > E

[

∫ T

t

[Aûx
s
·Xx+εe1

s − ψ(s, ûx
s)] ds−

∫ T

t

C|dûx|s
∣

∣Xt = x+ εe1

]

= J(t, x, i) + ε ∂1(t, x1, i)
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for some function ∂1 due to (3.19) and (3.20). Now in reverse, starting with x+ εe1

and looking at ûx+εe1 we obtain

J(t, x, i) > J(t, x+ εe1, i) − ε ∂1(t, x1 + ε, i),

which must imply that fixing the other parameters ∂1(t, x, i) is increasing in x. Now

letting ε → 0, we see that ∂1(t, x, i) is nothing but the right derivative in the first

coordinate direction ∂J(t, x, i)/∂x+
1 . So we showed that the derivative of the value

function is increasing in x, i.e. J(t, x, i) is convex in x.

For a general convex ψi, write it as a supremum of piecewise linear functions.

For any truncated piecewise linear approximation ψi(x) ' max16j6M ψij(x), enlarge

the policy space by replacing regime i with a collection {i1, i2, . . . iM}, such that the

payoff rate at regime ij is ψij and the switching cost between two regimes in the

collection is zero. Once we allow as many of those zero-cost switches as desired, the

acceptable strategies reduce to the set U and we have an obvious correspondence to

the original setting. The first part of the proof applies now to the extended policies

and we are done.

A related result in the special case of American options and one-dimensional (Xt) ap-

peared in El Karoui et al. [34]. There it is also shown that if one does not immediately

switch at (t, x) then the left-derivative of J(t, x, i) is bounded by the left-derivative

of ψi(x).

We now suppose that the flow of (Xt) is Lipschitz, namely that µ and σ in (3.1)

are continuously differentiable with bounded derivatives. By a standard result this

implies E
x|Xx

t |2 6 C(1+‖x‖2), or more generally, E
x[supt ‖Xt‖p] 6 C(1+‖x‖p) [65,

p. 342]. As a corollary we obtain the following two lemmas.

Lemma 1. Suppose all the payoff rates ψi(t, x) are Lipschitz in x. Then the value

functions J(t, x, i) are Lipschitz in x.
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Proof. This is a simple estimate :

|J(t, x, i) − J(t, y, i)|2 6 sup
u∈U(t)

E
[

∫ T

t

|ψus(s,X
t,x
s ) − ψus(s,X

t,y
s )|2 ds

]

6 C E

[

∫ T

t

|X t,x
s −X t,y

s |2 ds
]

6 C E
[

sup
t6s6T

|X t,x
s −X t,y

s |2
]

6 C‖x− y‖2,

where C denotes a generic constant that changes from expression to expression.

Lemma 2. Suppose the payoff rates ψi and the process (Xt) are time-homogeneous

and E[sups |ψi(Xs)|] < ∞ for all i. Then the value function J(t, x, i) is Lipschitz

continuous in t.

Proof. Because of the time-homogeneity, J(t, x, i;T ) = J(0, x, i;T − t), i.e. we can

shift the problem to time zero and maturity (T − t). Therefore for t < t′,

|J(t, x, i) − J(t′, x, i)| = |J(0, x, i;T − t) − J(0, x, i;T − t′)|

6 sup
u∈U(T−t′)

E
x
[

∫ T−t

T−t′
|ψus(X

x
s )| ds

]

6 (t′ − t) E
[

sup
s

max
i

|ψi(X
x
s )|

]

,

and the last expression is uniform in (t′ − t) by Assumption 1.

Theorem 5. Suppose (Xt) is time-homogeneous, the costs are additive: Ci,j = Ci,`+

C`,j whenever i < ` < j, and coordinate-wise monotone in payoff ∂xn(ψi − ψj) > 0

(alternatively 6 0) for all i > j. Then the optimal policy for J(t, x, i) can be char-

acterized by exercise boundaries that divide the base space E into connected regions.

Proof. Additive costs imply that Ci,j = C|i − j| which is the case we originally

considered in Section 2.2. Consider now two optimal policies û and v̂ corresponding

to starting with same initial condition X0 = x but different initial regimes. We claim

that if û0 > v̂0 then ût ≥ v̂t ∀t. Clearly, along any given path of (Xt), whenever
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ûs = v̂s then the optimal policies coalesce after s by the Markov property. For the

order to be reversed, there must therefore be some time τ such that ûτ− > v̂τ−

but ûτ < v̂τ . Without loss of generality assume that τ is a switching time of v̂

with v̂τ− = 0, ûτ− = ûτ = 1, v̂τ = 2. Then being in regime 0 at τ we must prefer

regime 2 to regime 1, i.e. J(τ,Xτ , 2)− 2C > J(τ,Xτ , 1)−C. But then J(τ,Xτ , 1) <

J(τ,Xτ , 2) − C and so at τ one should also switch from regime 1 to regime 2,

contradicting ûτ = 1.

The claim is proven and by assumption ∂x(ψût − ψv̂t) > 0 (6 0). Therefore the

same is true of the respective value functions. It follows that the difference between

any two J(t, x, i) and J(t, x, j) is always strictly increasing (strictly decreasing) and

the set

Switch(i, j; t)
M
=

{

x ∈ R
d : −Ci,j + J(t, x, j) > max

j′ 6=j

{

−Ci,j′ + J(t, x, j′)
}

}

of all x’s where it is optimal to immediately switch from regime i to j is connected.

The switching boundaries are the boundaries of Switch(i, j; t) as a function of t for

different pairs of (i, j). By Lemma 2 the value function J is continuous in t, and

consequently so is the switching set and its boundary.

3.6 Review of the Variational Formulation

We recall that optimal switching is a special case of impulse control. Redefine the

controlled (Markov) state process to be X̃t = (Xt, ut) with values in R
d × ZM .

Applying the impulse (ξ, τ) costs C(X̃τ−, ξ) and changes the regime only, X̃τ =

(Xτ−, ξ). In general, X̃τ = X̃τ− + ξ and the aim of the controller is to maximize the

discounted future reward up to final time T0, which is either a killing time of X̃ or

an exogeneous problem horizon,

J(t, x) = sup
(ξ,T )∈U(t)

E

[

∫ T0

t

e−rsΨ(X̃s) ds−
∑

τk<T0

e−rτkC(X̃τk−, ξk)
∣

∣

∣
X̃t = x

]

.
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Such problems have been looked at extensively in finance, e.g. for optimal trading

with fixed transaction costs [51] or foreign exchange intervention [47].

The classical method of solving impulse control problems driven by Markov pro-

cesses goes back to the fundamental work of Bensoussan and Lions [8]. The idea is

to study the parabolic partial differential equation resulting from applying Bellman’s

principle to the process conditional on no control on [t, t + dt), together with the

equation corresponding to applying optimal control at t. At least one of these two

equations must hold at any given instant. Combined we obtain a (quasi-) variational

formulation with a free boundary.

The key connection to analysis is furnished by Dynkin’s formula:

Proposition 2. [61, Theorem 7.4.1] Let (Xt) be an Itô diffusion with space-time

generator

LX
M
= ∂t +

∑

i

µi(x)
∂

∂xi

+
1

2

∑

i,j

(

σ(x)σ(x)T
)

ij

∂2

∂xi ∂xj

and f ∈ C1,2([0, T ] × E). Suppose τ is a stopping time, E
x[τ ] < ∞ and f(t,Xt) is

bounded on [0, τ). Then

E
x[f(τ,Xτ )] = f(0, x) + E

x
[

∫ τ

0

LXf(s,Xs) ds
]

. (3.21)

The main tool now is the verification theorem. It states that a smooth solution of

the quasi-variational inequality (QVI) constructed below is in fact the value function

of the impulse control problem. We adapt it to optimal switching where the impulses

affect only the operating regime.

Proposition 3 ([12, 62]). Let X be a Markov càdlàg process on E ⊆ R
d with

space-time generator LX . Denote by Mφ(t, x, i) = maxj 6=i{−Ci,j + φ(t, x, j)} the

intervention operator. We again think of M as the barrier above which our solution

must remain. Let

D = ∪i

{

(t, x) : φ(t, x, i) = Mφ(t, x, i)
}
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be the free boundary. Suppose there exists φ(t, x, i) belonging to C1,2
(

([0, T0]×E) \D
)

∩

C1,1(D) and satisfying the following quasi-variational Hamilton-Jacobi-Bellman (HJB)

inequality for all i ∈ ZM :

i. φ > Mφ,

ii. E
x
[∫ T

0

�
φ6Mφ dt

]

= 0,

iii. LXφ(t, x, i) + ψi(t, x) 6 0, φ(T, x, i) = 0,

iv.
(

LXφ(t, x, i) + ψi(t, x)
)(

φ(t, x, i) −Mφ(t, x, i)
)

= 0.

Then φ is the optimal value function for the switching problem (2.4).

In words, the conditions on φ require it to dominate the barrier and satisfy the

fundamental PDE inside the continuation region. In addition, the free boundary

must be such that the process spends Lebesgue-measure zero time on it on the

entire interval [0, T0]
2 .

The proof relies on application of (3.21). Since φ is potentially unbounded, let

τR be the minimum of T0 and the first exit time for (Xt) from a ball of radius R.

Then for any stopping time τ ,

φ(t, x, i) = E

[

−
∫ τ∧τR

t

LXφ(s,X t,x
s , i) ds+ φ(τ ∧ τR, X t,x

τ∧τR
, i)

∣

∣

∣
Xt = x

]

> E

[

∫ τ∧τR

t

ψi(s,X
t,x
s ) ds+ φ(τ ∧ τR, X t,x

τ∧τR
, i)

∣

∣

∣
Xt = x

]

, (3.22)

where we have plugged in condition (iii). Next we let the intervention times be the

hitting times of the barrier τk
M
= inf{s > τk−1 : φ(s,Xs, uτk−1

) 6Mφ(s,Xs, uτk−1
)}∧ T,

and ξk be such that φ(τk−, Xτk−, ξk) = Mφ(τk−, Xτk−, ξk−1). Equality now holds in

(iii) and therefore in (3.22) on each subinterval [τk, τk+1). By induction it can then

2In the literature an alternative notation is to say that φ is stochastically-C2 on E.
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be shown [8, Lemma 6.3.8] that assuming τk < T ∧ τR, and calling u∗ the strategy

of using (τk, ξk) above,

φ(0, x, i) = E

[

∫ τk

0

ψu∗
t
(t,Xt) dt+ φ(τk, Xτk

, u∗τk
)

− C

k
∑

i=1

|u∗τi
− u∗τi−

|
∣

∣

∣
X0 = x, u0 = i

]

, (3.23)

with inequality for any other strategy u. The rest of the proof is like the proof of

Theorem 2 in Section 3.3.

While providing a very general framework, the variational approach has a large

overhead. Analysis of the QVI without a priori assumption of a smooth solution is

quite involved. Besides classical strong solutions, there are all sorts of weak solu-

tions. For example, it can be shown [8, Chapter 6] that the increasing sequence of

solutions φk which consists in applying the optimal control up to τk, cf. (3.23) con-

verges upwards to the minimum solution of the QVI. At the same time, the sequence

of approximate solutions resulting from solving the problem using at most k con-

trols, cf. (3.6) converges to the maximum solution of the QVI. As the names suggest,

the two are not necessarily equal. To achieve uniqueness, one must pass to the no-

tion of viscosity solutions. Fortunately, viscosity solutions are naturally compatible

with stochastic control. Thus, the value function J is always the (unique) viscosity

solution of the system in Proposition 3, furnishing the converse to the verification

theorem above. Viscosity solutions are beyond the scope of this thesis and we refer

to the volume of Fleming and Soner [40] for extensive discussion in the context of

general stochastic control.

For implementation, the ‘smooth pasting’ condition of being C1 acrossD is crucial

for determining the free boundary. However, it is often assumed without justification,

by invoking heuristic arguments. Even then it only leads to a system of implicit

equations with the existence of a solution again unclear. See for example the paper of

Brekke and Øksendal [12, p. 1031], where the free boundary is parametrized by four
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quantities a1, . . . , a4 and a complicated coupled algebraic system of equations in aj is

obtained. The authors then state “we have not been able to derive tractable general

conditions for existence of a solution” to this system. To sum up, the variational

method poses a multitude of technical challenges that prevent rigorous solutions

in all but the simplest settings. It is a theoretical overkill that underperforms in

practice.

3.6.1 Smallest Excessive Majorants

The original probabilistic treatment of optimal stopping is due to Dynkin [30]. Re-

call,

Definition 3. A nonnegative function f ∈ C1(E) is called β-excessive if for all

x ∈ E,

f(x) > E
x[e−βtf(Xt)] for all t > 0, and lim

t↘0
E

x[e−βtf(Xt)] = f(x).

If β = 0 we just call f excessive.

Dynkin’s approach is based on the fact that the Snell envelope is the smallest

excessive majorant (s.e.m.) of the payoff function. S.e.m.’s may be sometimes found

directly by inspection. For example, in the special case when (Xt) is a standard

one-dimensional Brownian motion, excessive functions are characterized as concave

functions. Recently this result has been extended by Dayanik [24] to all regular

one-dimensional diffusions. In general, to find the s.e.m. Q of f , let (Qnf)(x) =

maxk

(

f(x),Ex[f(X2−n)], . . . ,Ex[f(Xk·2−n)], . . .
)

. Then Q(x) = limn→∞Qnf(x). [66,

Lemma III.1] Observe how Qn essentially discretizes the set of stopping times to be

multiples of 2−n.

Excessive functions are fundamentally smooth. If (Xt) is any càdlàg strong

Markov process and f is excessive for (Xt), then f is continuous [31, Theorem 12.4].

Moreover, if (Xt) is continuous then excessive functions are superharmonic for the
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generator LX , i.e. LXf 6 0 in the variational sense. This is an extension of the

smoothness properties of convex functions which satisfy “∆f 6 0”.

Corollary 1. Suppose (Xt) is a càdlàg strong Markov process on E ⊆ R
d and all

the payoff rates are time-homogeneous. Then the value function V n,k;N coming from

the exponential maturity randomization (3.15) is N/T -excessive.

The above proposition follows more or less directly from [66, Theorem III.3.1] since

as already stated the problem for V n,k is a standard optimal stopping problem for

a stationary process discounted at rate λ = N/T . Now the original value function

J is the limit as N → ∞, λ → ∞, k → ∞ of V N,k. This provides an interesting

angle of attack for studying the smoothness of J . However, one must be careful since

the excessivity property is non-uniform and depends on total number of exponential

periods N .

In the one-dimensional case we have a more precise condition recently found by

Dayanik and Egami [23].

Definition 4. Set F λ = ψλ/φλ where ψλ (resp. φλ) is the increasing (decreasing)

fundamental solution of LXu− λu = 0. A function u : E → R is called F λ-concave

if for every l 6 x 6 r

u(x) > u(l)
F (r) − F (x)

F (r) − F (l)
+ u(r)

F (x) − F (l)

F (r) − F (l)
.

Proposition 4 ([23], Theorem 5.1). Suppose (Xt) is a regular one-dimensional dif-

fusion with domain E an open subset of R. Then the value function of the impulse

control problem

V1(x, i)
M
= sup

u∈U
E

[

H(x, i, [0, T̄1];u)
]

, T̄1 ∼ exp(λ)

is F λ-concave on int(E).

The significance of this proposition is that there are simple geometric methods

for finding F λ-concave majorants. Consequently, the above result shows that there
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are potentially even closed form solutions to the optimal switching problem with an

exponential horizon. It would be interesting to further explore this aspect using the

Dynkin-Dayanik techniques.

3.7 Reflected Backward SDEs

The reflected backward stochastic differential equations (BSDE) are the probabilis-

tic counterpart of the variational approach when (Xt) is an Itô diffusion. For a

given initial condition X0 = x, suppose ∃(Y x, Zx, A)3 adapted to (FX
t ) such that

E
[

sup06t6T |Y x
t |2 +

∫ T

0
‖Zx

t ‖2 dt+ |AT |2
]

<∞, A is continuous and increasing and

Y x
t =

∫ T

t

ψi(s,X
x
s ) ds+ AT − At −

∫ T

t

Zs · dWs, (3.24)

Y x
t > Mk,i(t,Xx

t ), as defined in (3.8)
∫ T

0

(Y x
t −Mk,i(t,Xx

t )) dAt = 0, A0 = 0.

The interpretation is that Z is a conditional expectation process that helps Yt to

be Ft-measurable, while A is a compensator that increases only when Y hits the

barrier Mk,i. Let us also mention that the integrability assumption Mk,i ∈ S 2
T that

we checked in Theorem 1 is necessary for (3.24) to make sense. The first result in

[35, Prop. 2.3] shows that Y x
0 = Jk(0, x, i). More generally, Y x

t = Jk(t,Xx
t , i). For

the intuition of why this might be true, it suffices to observe that by construction of

(3.24) for any stopping time τ ,

Y x
t = E

[

∫ τ

t

ψi(s,Xs) ds+ Y x
τ + Aτ − At

∣

∣

∣
Ft

]

> E

[

∫ τ

t

ψi(s,Xs) ds+ Mk,i(τ,Xτ )
�

τ<T

]

and At = 0 until Y hits the barrier. It follows that equality above holds for τ =

τ ∗ = inf{s > 0: Y x
s = Mk,i(s,Xs)} which must be optimal.

3Of course, all the parameters are functions of initial mode i as well
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Let us next state some estimates on Y which will be especially important for our

convergence proofs in Section 4.3. We work with a slightly modified version where

the barrier is an explicit function of Xt:















Yt =
∫ T

t
Ψ(s,Xs) ds+ AT − At −

∫ T

t
Zs · dWs,

Yt > g(t,Xt), and
∫ T

0
(Yt − g(t,Xt)) dAt = 0.

(3.25)

Assuming Ψ and g are uniformly Lipschitz in x and t,

|Ψ(t, x) − Ψ(t′, x′)| + |g(t, x) − g(t′, x′)| 6 C(1 + |t− t′| + ‖x− x′‖∞)

we have global estimates [35]

E[ sup
06t6T

|Yt|2 + A2
T ] 6 C E

[

∫ T

0

|Ψ(t,Xt)|2dt+ sup
06t6T

|g(t,Xt)|2
]

(3.26)

or
∥

∥ sup
06t6T

|Yt|
∥

∥

p
6 C

(

1 + ‖ sup
06t6T

|Xt|‖p

)

.

Secondly, (3.25) satisfies a stability property: if Y ′ solves the same system but with

modified barrier g′ and generator Ψ′ then

|Yt − Y ′
t | 6 eC(T−t)(‖g − g′‖∞ + (T − t)‖Ψ − Ψ′‖∞).

Note that the last equation implies uniqueness of solutions to (3.25).

The BSDE formulation clarifies the continuity properties of the Snell envelope.

Indeed, if the barrier Mk,i is continuous in t, it is clear that the solution Y of (3.24)

is also continuous. Furthermore, analogues of stochastic flow theory imply that

under regularity conditions on the parameters of the stochastic differential equation

for (Xt), Y
x will be continuously differentiable in the initial condition x and other

parameters of the (Xt)-SDE [36]. By induction the same is true of the recursive

value functions Jk(t, x, i) of our problem (but not necessarily of J(t, x, i) itself).

The link between BSDEs and parabolic PDEs is quite deep. Set (Y t,x
s )t6s6T to

be the solution of (3.24) with Xt = x. Then there exists a measurable function u
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such that u(s,X t,x
s ) = Y t,x

s . In particular, u(t, x) = Y t,x
t which is deterministic and

continuous in both t and x. This u can be shown to be the unique viscosity solution

of the QVI in Proposition 3. In particular, if the QVI admits a classical solution (for

example if all the coefficients are C3 and bounded) then u(t, x) ∈ C1,2([0, T ] × R
d).

Remark 1. The quasi-variational inequality for optimal switching can be re-formulated

as a coupled system of reflected BSDE’s for (Y i)i∈ZM
,

Y i
t =

∫ T

t

ψi(s,Xs) ds+ Ai
T − Ai

t −
∫ T

t

Zi
s · dWs

Y i
t > max

j 6=i
{−Ci,j + Y j

t }.

However, the question of existence and uniqueness of solutions to such systems is

difficult. In the special case of two regimes M = 2, Hamadène and Jeanblanc [44]

explicitly proved existence by working with the difference process Y 1 − Y 2. For

M > 2 it seems that the only available tools are either the analytic approach via

viscosity solutions of the QVI or the recursive optimal stopping that we use.



Chapter 4

Numerical Solution

4.1 Dynamic Programming in Discrete Time

We now describe the numerical procedure for solving the optimal switching problem

formulated recursively in (3.7). To be able to do numerical computation, we first

pass from the continuous time to discrete time. Let {m∆t, m = 0, 1, . . . ,M ]},

∆t = T
M] be a discrete time grid. Switches are now allowed only at grid points,

i.e. τk ∈ S∆ = {m∆t : 0 6 m 6 M ]} and we label as U∆ the corresponding set

of admissible strategies. This limiting of managerial flexibility is similar to looking

at Bermudan options as approximation to American exercise rights. If the problem

horizon is about 2−6 months, a practical discretization is on the scale of ∆t = 3−12

hours.

Let t1 = m∆t, t2 = (m+ 1)∆t be two consecutive time steps. In discrete time,

the Snell envelope is easily computed through the backward dynamic programming

(DP) method. More precisely, the Snell envelope property of Jk(t1, x, i) reduces to

38
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deciding between immediate switch at t1 to some other regime j versus no switching

and therefore waiting until t2. Thus, (3.7) becomes

Jk(t1, Xt1 , i) = max
(

E
[

∫ t2

t1

ψi(s,Xs) ds+ Jk(t2, Xt2 , i)| Ft1

]

, Mk,i(t1, Xt1)
)

' max
(

ψi(t1, Xt1) ∆t+ E
[

Jk(t2, Xt2 , i)| Ft1

]

, (4.1)

max
j 6=i

{

−C|i− j| + Jk−1(t1, Xt1 , j)
}

)

.

We see that to solve the problem it suffices to have a computationally efficient algo-

rithm for evaluating the conditional expectations appearing in (4.1). Recall that the

conditional expectation E[f(Xt2)| Ft1 ] is defined to be the Ft1-measurable random

variable F which minimizes E[|f(Xt2)−F |2]. On the other hand, if (Xt) is Markov,

any such Ft1-measurable F may be written as F = F (Xt1). Therefore, the condi-

tional expectation can be viewed as simply a mapping x 7→ Et1(x)
M
= E[f(Xt2)|Xt1 =

x] ∈ L2(P). Hence, one possible numerical strategy for evaluating the former is to

approximate the map Et1 which is a well-studied statistical problem.

We concentrate on a particular variation first described by Longstaff and Schwartz

[54] and Tsitsiklis and van Roy [67]. The idea is to project Et onto a truncation of

a basis of the Hilbert space L2(P). This finite projection is just a regression of Et

against the first NB basis functions, i.e.

Et(x) ' Êt(x) =
NB
∑

j=1

αjBj(x), (4.2)

where Bj(x) are the bases and αj the R-valued coefficients.

The computational advantage is that the projection can now be approximated

with an empirical regression. The algorithm generates a large Monte Carlo sample

(x`
t1
, x`

t2
)Np

`=1 from the joint distribution of Xt1 and Xt2 . The empirical values f(x`
t2
)

are then regressed against {Bj(x
`
t1
)} to obtain the coefficients αj after which we can

use (4.2) to compute the conditional expectations.
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We now extend this idea to allow for simultaneous recursive computation of all the

Jk’s. Begin by generating Np sample paths x` of the discretized (Xt) process with a

fixed initial condition X0 = x. We will approximate Jk(0, x, i) by 1
Np

∑

` J
k(0, x`

0, i).

The pathwise values Jk(t, x`
t, i) are computed recursively in a backward fashion,

starting with Jk(T, x`
T , i) = 0. To implement (4.1), for a given step t1 = m∆t and

regime i we regress the known future values Jk((m+ 1)∆t, x`
(m+1)∆t, i) onto the cur-

rent underlying values {Bj(x
`
m∆t)}. As a result of regression we obtain a prediction

Êm∆t

[

Jk(m∆t, ·, i)
]

(x`
m∆t) for the continuation value along the `-th path. Compar-

ing this with the current value Jk−1(m∆t, x`
m∆t, j) from a lower ‘layer’ k−1 for each

switching choice j we can find the optimal decision at t1. The computations are

done bottom-up in k, so that indeed Jk−1(m∆t, x`
m∆t, j) is known when computing

Jk(m∆t, x`
m∆t, i). The efficiency is maintained because we use the same set of paths

to compute all the recursive conditional expectations. At a given layer k, the com-

putations of Jk for different regimes i are independent of each other, and hence the

errors only cumulate with respect to number of switches.

Recursion for τ k

It turns out that for numerical efficiency rather than directly computing the value

function, it is better to instead keep track of the optimal stopping time. This

was the beautiful insight of Longstaff and Schwartz [54], as opposed to the Tsit-

siklis and Van Roy paper [67] which implemented the just-described algorithm as

is. Let τ k(m∆t,Xm∆t, i) ·∆t correspond to the smallest optimal switching time for

Jk(m∆t,Xm∆t, i). In other words, the optimal future rewards are given by

Jk(m∆t, x, i) = E

[

τk
∑

j=m

ψi(j∆t,Xj∆t) ∆t+ Mk,i(τ k∆t,Xτk∆t)
∣

∣Xm∆t = x
]

.

Then we have the analogue of (4.1) for τ k:

τ k(m∆t, x`
m∆t, i) =







τ k((m+ 1)∆t, x`
(m+1)∆t, i), no switch;

m, switch,
(4.3)
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and the set of paths on which we switch is given by {` : ̂`(m∆t; i) 6= i} with

̂`(t1; i) = arg max
j

(

−Ci,j + Jk−1(t1, x
`
t1
, j), ψi(t1, x

`
t1
)∆t+ Êt1

[

Jk(t2, ·, i)
]

(x`
t1
)
)

.

(4.4)

The full recursive pathwise construction for Jk is

Jk(m∆t, x`
m∆t, i) =







ψi(m∆t, x`
m∆t) ∆t + Jk((m+ 1)∆t, x`

(m+1)∆t, i), no switch;

−Ci,j + Jk−1(m∆t, x`
m∆t, j), switch to j.

(4.5)

Observe that in this version the regression is used solely to update the optimal

stopping times τ k and the regressed values are never stored directly. This additional

layer of random behavior helps to eliminate potential biases from the regression step.

Choosing the Basis Functions

The choice of appropriate basis functions (Bj) is rather heuristic. Several canonical

choices have been proposed, including the Laguerre polynomials

Bj(x) = e−x/2 ex

j!

dj(xje−x)

dxj

from the original paper [54] and the indicator functions Bj(x) =
�

Ej
(x) of a partition

of E [42]. A more automated approach was suggested by [46] based on neural

networks. The idea is to use the logistic basis

Bj(x) =
eαjx

eα1x + . . .+ eα
NB x ,

where the coefficients (αj) are picked using a factor analysis of the current data. In

any case, the numerical precision can be greatly improved by customizing the basis.

In particular, it helps to use basis functions that resemble the expected shape of the

value function. In examples of this thesis ψi are usually linear and our favorite set

of bases Bj(x) are of the form xp, eαx and max(x−K, 0).
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In a multi-dimensional setting the simplest choice is to use tensor products of

one-dimensional bases
∏

k Bjk
. This makes the required number of basis functions in

principle exponential in the dimension of (Xt). However, if the rewards only depend

on fixed linear combinations of components of Xt, even a linear number of bases

might be sufficient to capture the relationship between the value function J(t, x, i)

and x. In practice, NB as small as 5 or 6 normally suffices, and having more bases

can often lead to worse numerical results due to overfitting.

4.1.1 Delay and Time Separation

An important feature of a realistic model is operational delay. Turning a physical

plant on/off is not only costly, but also takes a significant amount of time. A typical

plant requires 4 − 12 hours of ramping up before it is operational. This delay is

important if we look at markets with price spikes. Because there is a lag in taking

a plant online, the operator is more risk averse, since he faces more uncertainty

regarding the profitability of the spark spread by the time the plant is running. To

approximate this phenomenon, we may want to assume that each switch takes a

fixed amount of money Ci,j, as well as a fixed delay time δ, so that the plant is in

its new regime only after t+ δ. Unfortunately, in continuous time, correct treatment

of delay is cumbersome. The definition of the total reward obtained from strategy u

must be changed from (2.2) to

H(x, i, [0, T ];u) =

∫ T

0

ψus−δ
(s,Xs) ds− C

∫ T

0

|du|s

where we define us = i for −δ 6 s 6 0. Note that us is still Fs-measurable,

but the corresponding payoff is only realized at s + δ. The appearance of ψus−δ

introduces acute technical difficulties, see for example work of Bar Ilan et al. [6] on

irreversible real options with installation delay and Elsanosi et al. [37] on delayed

optimal harvesting.
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As an approximation of time delay we instead can impose time separation i.e. the

constraint τk > τk−1 + δ1 . This models the situation where the effect of the switch

takes place immediately but then the plant is locked-up for a period of δ. Clearly,

such situation is less risky than true delay because decisions have instantaneous

impact, but it still limits the flexibility of the operator. With separation we also

strictly speaking lose the Markov property of the value function. If we made a

switch at t, time advances to t+ δ while our hands are tied. Hence, (3.7) only holds

at the switch times.

The advantage is that in discrete time, especially if δ is a multiple of ∆t, separa-

tion is very convenient to implement. It means that instead of evaluating E[Jk(t +

∆t,Xt+∆t, i)| Ft] we now need to compute E[Jk(t + δ,Xt+δ, i)
∣

∣Ft] the conditional

expectation δ/∆t steps ahead, but this is as easy as the original computation. Dia-

gram 4.1 illustrates the dependency in space-time of the value functions with different

delay settings.

Unlimited Number of Switches

If the physical problem has no upper limit on number of switches made, we can

simplify the algorithm by replacing all Jk’s with just J . In other words, we do not

need to keep track of number of switches made. Indeed, on a discrete grid we can

make at most M total switches, so that for k > 2 ·M , Jk(m∆t, ·) ≡ Jk−1(m∆t, ·) for

any m. This allows to flatten our construction of Jk in (4.1) and significantly speed

up the computation.

Remark 2. In a real-life setting it is possible that the number of switches is limited

a priori so that we really have to compute Jk for a fixed k. For instance, consider

an operator who does not like switching due to political implications— he must not

appear to be a price speculator. Thus, the management postulates that at most K̄

1See also [17] for a related discussion in the case of energy swing options.
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m∆t (m+ 1)∆t m∆t+ δ

Standard Jk(t1, x, i) Jk(t2,Xt2 , i)

Jk−1(t1, x, j)

+ψi(Xt1)∆t

Delay Jk(t1, x, i) Jk(t2,Xt2 , i)

Jk−1(t1, x, j)

+ψi(Xm∆t+δ)∆t

Separation Jk(t1, x, i) Jk(t2,Xt2 , i)

+ψi(Xt1)∆t

Jk−1(t2,Xt2 , j)

Figure 4.1: Decision Making with Different Delay Settings

switches can be made within a given month. If K̄ is small, then J K̄ < J∞ strictly

and recursive computations are the only feasible approach.

4.1.2 Approximating the Switching Boundary

The Monte Carlo regression algorithm also produces an approximation to the switch-

ing boundary. Recall that the switching boundary specifies for each k, i the graph

(t, xt) such that the minimal optimal switching time corresponds to the first time of

hitting this barrier. In our case, for each instant t and regime i we have (M − 1)

boundaries containing the thresholds at which our optimal strategy at the current

time step changes to regime j.
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Since we keep track of optimal minimal τ , we can easily reconstruct the switching

boundary by summarizing at the end of the algorithm the graph of τ k(0, x0, i) against

Xt. Namely, the set

{x`
m∆t : ` is such that τ k(0, x`, i) = m} (4.6)

defines the empirical region of switching from regime i at instant m∆t. The com-

plement is the continuation set and we can determine the regime switched into by

keeping track of ̂` from (4.4). The switching boundary can in turn be used in the

forward direction to construct the optimal dispatch policy for any given path of (Xt).

See Section 4.4 for a numerical example.

4.2 Summary of Algorithm

What follows is the summary of the numerical algorithm we use:

i. Select a set of basis functions (Bj) and algorithm parameters ∆t,M ], Np, K̄, δ.

ii. Generate Np paths of the driving process: {x`
m∆t, m = 0, 1, . . . ,M ], ` =

1, 2, . . . , Np} with fixed initial condition x`
0 = x0.

iii. Initialize the value functions and minimal switching times Jk(T, x`
T , i) = 0,

τ k(T, x`
T , i) = M ] ∀i, k.

iv. Moving backward in time with t = m∆t, m = M ], . . . , 0 repeat the following:

• Compute inductively the layers k = 0, 1, . . . , K̄ using (3.7). To evaluate

the conditional expectation E
[

Jk(m∆t+∆t, ·, i)| Fm∆t

]

regress {Jk(m∆t+

∆t, x`
m∆t+∆t, i)} against current set of basis functions {Bj(x

`
m∆t)}NB

j=1. Add

the reward ψi(m∆t, x`
m∆t) · ∆t to the continuation value.

• Update the optimal switching times and value functions using (4.3), (4.4)

and (4.5).
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v. end Loop.

vi. Check back whether K̄ switches are enough by comparing J K̄ and J K̄−1 (they

should be equal).

vii. To obtain the free boundary, for each given k, i,m∆t compute (4.6).

Observe that during the main loop we only need to store the buffer values

J(t, ·), . . . , J(t+ δ, ·); and τ(t, ·), . . . , τ(t+ δ, ·).

We call the described algorithm the Longstaff-Schwartz Monte Carlo regression

scheme, or just (LS). It is distinguished from the Tsitsiklis-van Roy (TvR) scheme

which in step iv.2 directly uses the conditional expectations,

Jk(m∆t, x`
m∆t, i) = Mk,i(m∆t, x`

m∆t)

∨
[

Êm∆t

[

Jk((m+ 1)∆t, ·, i)
]

(x`
(m+1)∆t) + ψi(m∆t, x`

m∆t) · ∆t
]

. (4.7)

Algorithm Requirements

The speed of the algorithm is O(M2 · K̄ · Np · M ]) where M is the number of

possible regimes, K̄ maximum number of switches, Np number of Monte Carlo paths,

and M ] the number of discrete time stages used. The memory requirements are

O(Np · (M ] +D · K̄ ·M)) where D = δ
∆t

+ 1 > 3 is the buffer size and the two terms

represent storage of sample paths and value functions respectively.

The algorithm complexity is quadratic in the number of regimes since we must

check the possibility of switching from each mode i into each other mode j. The

algorithm is linear in Np since during the regression step we only deal with matrices

of size Np × NB. Because the other dimension is fixed, the number of arithmetic

operations is linear in the bigger dimension.

In practice, the biggest constraint is in space, because the backward induction

requires keeping the entire array M ] × Np of sample paths in memory. Even for

reasonable values such as M ] = 500, Np = 20, 000 this is already 40MB of storage.
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4.3 Convergence

The presented algorithm for computing Jk has several layers of approximations. We

now take a systematic tally of all the errors involved. Looking back four types of

errors can be identified: error due to discretizing the SDE, error due to restricting

switching times, projection error and Monte Carlo sampling error. We shall address

each of these errors in turn and present the current state-of-the-art regarding error

bounds in terms of ∆t and the number of paths Np.

The framework of backward stochastic differential equations from Section 3.7 has

been the most successful for analyzing convergence properties of optimal stopping

algorithms. The basic TvR scheme (4.7) is essentially a simple algorithm for solving

discrete-time reflected BSDE’s, a topic that has been a very active area of research,

see e.g. [11, 21, 42]. The expected convergence properties of the TvR scheme are not

as good as of the LS scheme, however the former is much more amenable to analysis.

The BSDE approach starts from (3.24) and constructs a discrete time approxi-

mation to the pair (Y, Z). As we will see, this again reduces to computing condi-

tional expectations. The initial analysis of Bouchard and Touzi [11] used indepen-

dent approximations for each conditional expectation making errors at each time

step uncorrelated. More recently, Gobet et al. [42] extended this analysis to the

LS/TvR approach of using a single set of (Xt)-paths to approximate all the condi-

tional expectations. To simplify our proofs let us restate our framework with slightly

stronger assumptions. Recall that in terms of BSDE’s the problem reduces to finding

Y k,i
t ≡ Jk(t,Xx

t , i) (again we suppress dependence on x) where

Xt = x+

∫ t

0

µ(Xs) ds+

∫ t

0

σ(Xs) · dWs, (4.8)

Y k,i
t =

∫ T

t

ψi(s,Xs) ds+ AT − At −
∫ T

t

Zs · dWs,

Y k,i
t > Mk,i

t = max
j 6=i

{

−Ci,j + Y k−1,j
t

}

, and

∫ T

0

(

Y k,i
t −Mk,i

t

)

dAt = 0, (4.9)
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As usual, i represents the initial regime and k counts the number of switches, so

when k = 0 we simply have no barrier in (4.9). Because of the Markovian setting

Y k,i
t (and hence also Mk,i

t ) are functions of Xx
t , a fact that allows to connect the

backward and forward components.

Assumption 5. µ(x) and σ(x) are twice continuously differentiable, bounded and

Lipschitz. The payoffs ψi(x) are time-homogeneous, continuously differentiable and

Lipschitz.

The convergence proof will proceed in several steps. In Step 1, we will estimate

the error resulting from time discretization— discretizing (Xt) using Euler scheme

and (Y k,i
t ) using the standard backward scheme. Simultaneously we restrict the

switching times to occur only at the discrete time grid points. We show that the

error from this procedure which produces (X∆, Y k,i,∆, Zk,i,∆) is O(
√

∆t). In Step 2,

we replace the conditional expectations with a projection Pm on a finite dimensional

orthonormal family in L2(P). Hence, Y k,i,∆ is approximated by Ŷ k,i. The resulting

error is O(∆t−k · (mean projection error)). Finally, in Step 3 we further approximate

the projections by an empirical regression using N realizations of the paths (x`
m∆t,

` = 1, . . . , N). We conjecture that the error here is O((∆t · N)−1/2), the expected

rate for Monte Carlo methods.

This section will be heavy on notation, and we will often drop unnecessary sub-

scripts and superscripts to prevent clutter. Throughout M and N are used to denote

the number of discrete time periods and total number of Monte Carlo simulations

respectively. The time steps are indexed by m and the paths by `. In the proofs

below C is a generic constant that may change from line to line, and t1 and t2 are

two generic adjacent time steps, t1 = m∆t, t2 = t1+∆t. Finally, we use the standard

notation X ∨Y M
= max(X,Y ) and ‖X‖p = (E[|X|p])1/p, p > 1 for the Lp-norm of the

random variable X. At this point let us also recall the following
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Lemma 3. If positive sequences (am), (bm), (cm), 0 6 m 6 M satisfy am−1 6

max{(1 + C∆t)am + bm−1, cm−1} then

am 6 eC(T−m∆t)

[

aM +
∑

j>m

bj + max
j>m

cj

]

. (4.10)

This is just a straightforward extension of the discrete version of Gronwall’s inequal-

ity for the case where term-by-term maximum is taken. This lemma will be key for

L2 estimates when combined with Young’s inequality: (a+b)2 6 (1+γ)a2 +(1+ 1
γ
)b2

for any γ > 0.

4.3.1 Discretization Error

To discretize, we first use the classical Euler scheme for the process (Xt)
2 :















X∆
t2

= X∆
t1

+ µ(X∆
t1

)∆t+ σ(X∆
t1

) · (Wt2 −Wt1),

X∆
t = X∆

t1
+ µ(X∆

t1
)(t− t1) + σ(X∆

t1
) · (Wt −Wt1), for t ∈ (t1, t2).

(4.11)

Then a standard Lp-bound is [11, Lemma 3.2]

lim sup
∆t→0

1√
∆t

∥

∥ sup
06t6T

|Xt −X∆
t |

∥

∥

p
<∞ ∀p > 1. (4.12)

Assuming (4.11) for (X∆
t ), the discretized versions of (Y k,i, Zk,i) from (4.8), which

we label (Y k,i,∆, Zk,i,∆), and in an obvious way Mk,i,∆ solve

Y k,i,∆
t1 = max

{

Mk,i,∆
t1 , E

[

Y k,i,∆
t2 | Ft1

]

+ ψi(X
∆
t1

)∆t
}

, Y k,i,∆
T = 0, (4.13)

Zk,i,∆
t1 = E

[

Y k,i,∆
t2 · (Wt2 −Wt1)

∆t

∣

∣

∣
Ft1

]

. (4.14)

The alternative

Y k,i∆
t1 = max

{

Mk,i,∆
t1 , E

[

Y k,i,∆
t2 + ψi(X

∆
t2

)∆t
∣

∣Ft1

]}

has also been used by some authors, e.g. Bally et al. [4]. There is not much difference

for our setting, however (4.13) is better for the general situation where the generator

2If (Xt) is Gaussian this is not needed, but we cover the general setting since the backward
components must be discretized in any case.
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ψi may depend on Y k,i. From a financial point of view (4.13) means that the payoff

between today and tomorrow is certain. It is not clear which assumption is more

realistic but numerically for small ∆t the differences seem to be negligible.

The next theorem is an analogue of Theorem 7.1 in Bouchard and Touzi [11].

It shows that the total discretization error is O(
√

∆t). We provide a full proof for

completeness.

Theorem 6. For all p > 1,

lim sup
∆t→0

1√
∆t

sup
06m6M

∥

∥Y k,i,∆
m∆t − Y k,i

m∆t

∥

∥

p
<∞.

Proof. As in all subsequent proofs we will proceed by induction on k remembering

that the first level has no barrier and reduces to the standard BSDE situation. Let

S∆(m∆t) = {j∆t : m 6 j 6 M} be the set of our discretized stopping times after

m∆t and define the auxiliary processes

Rk,i
m∆t

M
= ess sup

τ∈S∆(m∆t)

E

[

Mk,i
τ + ∆t

M
∑

j=m

�
τ>j∆t · ψi(Xj∆t)

∣

∣

∣
Fm∆t

]

,

Lk,i
m∆t

M
= ess sup

τ∈S∆(m∆t)

E

[

Mk,i
τ +

∫ τ

m∆t

ψi(Xs) ds
∣

∣

∣
Fm∆t

]

.

Hence, Lk,i discretizes the stopping rule, while Rk,i converts the integrated reward

into a sum. We will use

|Y k,i,∆
t − Y k,i

t | 6 |Y k,i,∆
t −Rk,i

t | + |Rk,i
t − Lk,i

t | + |Lk,i
t − Y k,i

t |
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and separately estimate the three terms of the right hand side. First, for any τ ∈

S(m∆t), set τ̃ =
⌈

τ
∆t

⌉

·∆t ∈ S∆(m∆t) so that τ̃ rounds up τ to the next time point

on the grid. Then using the fact that ψi’s are Lipschitz we have

|Y k,i
m∆t − Lk,i

m∆t| 6 ess sup
τ∈S(m∆t)

Em

[

|Mk,i
τ −Mk,i

τ̃ | +
∫ τ̃

τ

|ψi(Xs)| ds
]

6 ess sup
τ∈S(m∆t)

max
j

Em

[

2 ·
∫ τ̃

τ

|ψj(Xs)| ds
]

6 2∆t · Em

[

sup
m∆t6s6T

max
j

|ψj(Xs)|
]

=⇒ ‖Y k,i
m∆t − Lk,i

m∆t‖p 6 C∆t
∥

∥ sup
06s6T

|Xs|
∥

∥

p
6 C∆t.

Next under Assumption 5 by a standard argument max06m6M ‖Rk,i
m∆t − Lk,i

m∆t‖p 6

C∆t, see e.g. Lemma 4 in [4]. Observe that both estimates above are uniform in k

because the approximation concerns ψi(Xt) only.

The bulk of the error is hidden inside the difference of Rk,i
m∆t and Y k,i,∆

m∆t which use

different barriers and different X’s. Applying |(X1 ∨ Y1)− (X2 ∨ Y2)| 6 |X1 −X2| ∨

|Y1 − Y2| on |Mk,i
τ −Mk,i,∆

τ | = |maxj 6=i(Y
k−1,j
τ − Ci,j) − maxj 6=i(Y

k−1,j,∆
τ − Ci,j)| we

have

|Rk,i
m∆t − Y k,i,∆

m∆t | 6 ess sup
τ∈S∆(m∆t)

Em

[

|Mk,i
τ −Mk,i,∆

τ | + ∆t
M

∑

j=m

�
τ>j∆t ·|ψi(X

∆
j∆t) − ψi(Xj∆t)|

]

6 Em

[

max
m6j6M

max
j′ 6=i

|Y k−1,j′

j∆t − Y k−1,j′,∆
j∆t | + C|X∆

j∆t −Xj∆t|
]

or

‖Rk,i
m∆t − Y k,i,∆

m∆t ‖p 6 C
√

∆t+
∥

∥ max
06j6M

max
j′ 6=i

|Y k−1,j′

j∆t − Y k−1,j′,∆
j∆t |

∥

∥

p
by (4.12).

Combining the three individual bounds we finally obtain,

∥

∥ max
06m6M

|Y k,i,∆
m∆t − Y k,i

m∆t|
∥

∥

p
6 C

√
∆t+

∥

∥ max
06m6M

max
j′ 6=i

|Y k−1,j′

m∆t − Y k−1,j′,∆
m∆t |

∥

∥

p

where the constant C is intrinsic to (Xt) and ψi’s. By induction on k, the O(
√

∆t)

error propagates through for any fixed level k.

The above error due to replacing the ‘American’ switching policy with a ‘Bermu-

dan’ one has also been studied by Dupuis and Wang [29]. Using Brownian local time
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techniques they directly show that for a one-dimensional optimal stopping problem

the discretized value functions converge with rate O(∆t) and give precise break-

down of the error sources. They furthermore demonstrate that the optimal stopping

rules converge only with rate O(
√

∆t), a result that is unavailable with the BSDE

formulation.

4.3.2 Projection Error

For the next step we approximate the conditional expectation Et1
M
= E[·| Ft1 ] by a

finite-dimensional projection Pt1 onto the set of bases Bt1 = Bt1(Xt1) (the latter is a

vector of length NB, but we do not write out the individual components). We label

by αt1 the resulting coefficients which form a random vector in R
NB

, and by Ŷ k,i
t1 the

approximation of Y k,i,∆
t1 . Hence the equation (4.13) is replaced with

Ŷ k,i
t1 =

(

Pt1 [Ŷ
k,i
t2 ] + ψi(Xt1)∆t

)

∨ M̂k,i
t1 (4.15)

=
(

αt1 ·Bt1 + ψi(Xt1) ∆t
)

∨ M̂k,i
t1

where αt1 is given by αt1 = arg minα E
[

|Ŷ k,i
t2 − α ·Bt1 |2

]

.

We first check that for a fixed k, Ŷ k,i
m∆t is uniformly L2-integrable. Using

E|(X1 ∨ Y1) − (X2 ∨ Y2)|2 6 (1 + γ)E|X1 −X2|2 ∨ (1 +
1

γ
)E|Y1 − Y2|2 (4.16)

as well as the fact that Pt1 is an L2-contraction and Young’s inequality we obtain

E[|Ŷ k,i
t1 |2] = E

[

|
(

Pt1 [Ŷ
k,i
t2 ] + ∆t ψi(Xt1)

)

∨ M̂k,i
t1 |2

]

6

(

(1 + C∆t) E
[

Pt1 [Ŷ
k,i
t2 ]2

]

+ (∆t2 +
∆t

C
) E

[

ψi(Xt1)
2
]

)

∨ (1 +
1

C∆t
)E|M̂k,i

t1 |2

6

(

(1 + C∆t) E
[

|Ŷ k,i
t2 |2

]

+ C∆t(1 + ‖x‖2)
)

∨ C(1 +
1

∆t
) max

j 6=i
E[|Ŷ k−1,j

t1 |2]

so that by Gronwall’s lemma

max
06m6M

E[|Ŷ k,i
m∆t|2] 6 C

(

1 + ‖x‖2 +
1

∆t
max
j 6=i

max
06m6M

E[|Ŷ k−1,j
m∆t |2]

)

. (4.17)
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Completing the induction on k, max06m6M E[|Ŷ k,i
m∆t|2] 6 C(∆t)−k(1 + ‖x‖2). Even

if this bound deteriorates as k increases, it still provides useful a priori estimates on

the regression result Y̌t1
M
= αt1 ·Bt1 . By (4.17) and orthonormality of Bt1 we have

E|Y̌ k,i
t1 |2 = E[|αt1 |2|Bt1 |2] = |αt1 |2 6 C(1 + ‖x‖2)

and consequently,

|Y̌ k,i
t1 | 6 |αt1 | · |Bt1(Xt1)| 6 |Bt1(Xt1)|

√

C(1 + ‖x‖2). (4.18)

Thus, we can construct a truncation function Tt1 such that |Y̌ k,i
t1 | 6 Tt1(Xt1) and

E[Tt1(Xt1)
2] <∞. This truncation is used to bound back αt1 via

|αt1 |2 = E|Y̌ k,i
t1 |2 6 E[Tt1(Xt1)

2].

We now investigate in more detail the build-up of regression errors. Let Rt1

denote the remainder after the projection Pt1 so that for any X ∈ Ft1 , X = Pt1(X)+

Rt1(X), and the two latter terms are orthogonal in L2. The following theorem is

similar to Theorem 2 in Gobet et al. [42].

Theorem 7. With the notation of (4.15), and Y k,i ≡ Y k,i,∆,

max
06m6M

E
[

|Ŷ k,i
m∆t − Y k,i

m∆t|2
]

6 C

M
∑

m=0

E
[

Rj(Em[Y k,i
(m+1)∆t])

2
]

+
C

∆t
max

06m6M
max
j 6=i

E
[

|Ŷ k−1,j
m∆t − Y k−1,j

m∆t |2
]

.

Proof. The theorem shows that the regression errors add up when moving across

a fixed level k and get multiplied by 1
∆t

when moving down to level k − 1. Set

ηk,i
t1

M
= E

[

|Ŷ k,i
t1 − Y k,i

t1 |2
]

. We will show that

ηk,i
t1 6 (1 + C∆t)

(

ηk,i
t2 + E[Rt1(Et1 [Y

k,i
t2 ])2]

)

∨ (1 +
1

C∆t
) max

j 6=i
ηk−1,j

t1 .
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Combined once again with Lemma 3 this is enough to prove the theorem. To show

the claimed inequality, re-write

ηk,i
t1 = E

∣

∣

∣

{

Pt1(Ŷ
k,i
t2 ) + ψi(t1, Xt1)∆t ∨ M̂k,i

t1

}

−
{

Et1(Y
k,i
t2 ) + ψi(t1, Xt1)∆t ∨Mk,i

t1

}∣

∣

∣

2

6 E

[

|Pt1(Ŷ
k,i
t2 ) − Et1(Y

k,i
t2 )|2 ∨ |M̂k,i

t1 −Mk,i
t1 |2

]

(4.19)

Since Pt1 is an L2-projection, for any Z, Pt1(Z) = Pt1(Et1 [Z]) and so Et1(Y
k,i
t2 ) =

Pt1(Y
k,i
t2 ) + Rt1(Et1 [Y

k,i
t2 ]) implying

E|Pt1(Ŷ
k,i
t2 ) − Et1 [Y

k,i
t2 ]|2 6 E[Rt1(Et1 [Y

k,i
t2 ])2] + E

[

|Ŷ k,i
t2 − Y k,i

t2 |2
]

by the orthogonality of the remainder Rt1 . Substituting into (4.19) and using (4.16)

ηk,i
t1 6 (1 + C∆t)

(

E[Rt1(Et1 [Y
k,i
t2 ])2] + ηk,i

t2

)

∨ (1 +
1

C∆t
)E|M̂k,i

t1 −Mk,i
t1 |2.

as desired.

In a more general way we can think of Pt1 as any approximation (not necessarily

a projection) of the conditional expectation. For example, Pt1 may be an empirical

Monte Carlo average. In this case the above theorem is slightly modified because we

can no longer use the orthogonality of the projection errors. We state the following

result which originally appeared in Bouchard and Touzi [11]:

Theorem 8. For any m, k, i,

‖Ŷ k,i
m∆t − Y k,i

m∆t‖p 6
C

∆t
max

m6j6M

(

∥

∥(Ej − Pj)(Ŷ
k,i
(j+1)∆t)

∥

∥

p
+ max

j′ 6=i
‖Ŷ k−1,j′

j∆t − Y k−1,j′

j∆t ‖p

)

.

Proof. Using same techniques as for (4.19),

|Y k,i
t1 − Ŷ k,i

t1 | 6

(

|(Et1 − Pt1)(Ŷ
k,i
t2 )| + Et1|Y k,i

t2 − Ŷ k,i
t2 |

)

∨ max
j 6=i

|Y k−1,j
t1 − Ŷ k−1,j

t1 |

‖Y k,i
t1 − Ŷ k,i

t1 ‖p 6 (1 + C∆t)
(

‖(Et1 − Pt1)(Ŷ
k,i
t2 )‖p

+ ‖Y k,i
t2 − Ŷ k,i

t2 ‖p

)

∨ (1 +
1

C∆t
) max

j′ 6=i
‖Y k−1,j′

t1 − Ŷ k−1,j′

t1 ‖p

which by Lemma 3 implies the result.
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4.3.3 Sampling Error

In the final step we simulate N sample paths {x`
m∆t, ` = 1, . . . , N} and replace the

projection Pm by an empirical regression. We call the resulting regression coefficients

αN
t1

and the resulting basis functions B`
t1

= Bt1(x
`
t1
). The approximation of Ŷ k,i along

the `-th path is labeled as Ŷ k,i,` and satisfies

Ŷ k,i,`
t1 =

(

T `
t1
(αN

t1
·B`

t1
) + ψi(x

`
t1
)∆t

)

∨ M̂k,i,`
t1 , (4.20)

αN
t1

= arg min
α

1

N

N
∑

`=1

(Ŷ k,i,`
t2 − α ·B`

t1
)2. (4.21)

The empirical truncation T `
t1
(x) is an analytical device relying on the a priori estimate

(4.18) to make sure that the simulation Y ’s are bounded. Letting Y̌ k,i,`
t1 = αN

t1
·B`

t1
, it

is taken such that T `
t1
(Y̌ k,i

t1 ) = T `
t1
(αt1 ·Bt1(x

`
t1
)) = αt1 ·Bt1(x

`
t1
) and T `

t1
(αN

t1
·Bt1(x

`
t1
)) 6

2·Tt1(x
`
t1
). In other terms, |Y̌ k,i,`| 6 2·|Y̌ k,i|. Note that T ` is random since it depends

on αt1 .

Full analysis of the Monte Carlo sampling error E|Ŷ k,i
t1 − hY k,i,N

t1 | where Ŷ k,i,N
t1 =

1
N

∑N
`=1 Ŷ

k,i,`
t1 appears to be intractable. The major difficulty is the presence of

the recursively defined M̂k,i,` which causes the sampling error to propagate in a

nonlinear fashion. Moreover, it is not clear how to compare the empirical Ŷ k,i,N

which is a sum of max-terms in (4.20) with Ŷ k,i which is a single max-term. Looking

closely the sampling error has three components that are closely intertwined— error

due to using αN
t1

rather than αt1 , error due to using M̂k,i,` rather than M̂k,i, and

error due to potentially choosing the wrong side in the max-comparison, i.e. picking

T `
t1
(Y̌ k,i,`

t1 ) + ψi(x
`
t1
)∆t over M̂k,i,`, when αt1 ·B`

t1
+ ψi(x

`
t1
)∆t < M̂k,i,`.

We do not know how to isolate these error sources, so let us summarize the results

of other papers that deal with simpler cases. The closest analogue is the paper of

Gobet et al. [42] who study the non-reflected case. Their main idea is to denote by
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BN
t1

= 1
N

∑N
`=1B

`
t1
(B`

t1
)T ∈ R

NB×NB

the sample regression matrix and to define the

‘good’ event

A
M
= {∀m : ‖BN

m∆t − Id‖ 6 ∆t}.

Remembering that the basis is orthonormal, for any fixed ∆t, P(A) → 1 as N → ∞

by the law of large numbers. On the other hand, using the truncation Tt1 and the

fact that the regression matrix is close to identity on A, we have (we abuse notation

and use Ŷ k,i,N even after dropping the reflection terms involving M in (4.20) and

(4.15))

E|Ŷ k,i,N
t1 − Ŷ k,i

t1 |2 6 E[
�
AC |Ŷ k,i,N

t1 − Ŷ k,i
t1 |2] + E

[�
A|Ŷ k,i,N

t1 − Ŷ k,i
t1 |2

]

6 E[
�
AC |2 · Tt1(Xt1) + Tt1(Xt1)|2] + E[

�
A‖BN

t1
‖2|αN

t1
− αt1 |2]

6 9 · P[Ac]1/2 · E[Tt1(Xt1)
4]1/2 + (1 + ∆t)E[

�
A|αN

t1
− αt1 |2].

Hence on A it suffices to estimate the error from the wrong regression coefficients

αN
t1

. Using Gronwall-type inequality Gobet et al. [42, Theorem 3] then show that

max
06m6M

E

[

�
A|αN

m∆t − αm∆t|2
]

6
C

∆t ·N

implying that the rate of convergence is O(N−1/2) on A. It still remains unclear how

fast does the ‘good’ event itself grow; observe that A requires the regression matrix

norm to be small uniformly in m∆t.

From a different angle, Bouchard and Touzi [11, Theorem 4.1] show that if one

directly approximates Et1 with a Monte Carlo simulation then the resulting rate of

convergence in Lp-norm is O(∆t−1−d/4p ·N−2p) both for the non-reflected case and a

single-level reflection. The technique is again to use a priori bounds on the empirical

Y ’s and Gronwall’s inequality.

On a more abstract level, Clément et al. [22] have shown that fixing NB and

using the Longstaff-Schwartz scheme (4.3) of approximating the optimal switching

time, the asymptotic sampling error as N → ∞ has mean zero and a Gaussian
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distribution. Moreover, the Central Limit Theorem rate of convergence O(N−1/2)

still applies. This justifies the idea of directly approximating the policy rather than

the value functions. Clément et al. also show that taking NB → ∞ we recover the

original value function Jk(t, x, i).

4.3.4 Final Word On Convergence

Summarizing the last three sections, the total error we have is

‖Y k,i
t − Ŷ k,i,∆,N‖2 6 ‖Y k,i

t − Y k,i,∆‖2 + ‖Y k,i,∆
t − Ŷ k,i,∆‖2 + ‖Ŷ k,i,∆

t − Ŷ k,i,∆,N‖2

?

6 C
(√

∆t+
E[Rt1(Et1 [Y

1,i
t2 ])2]

∆tk
+

1√
∆t ·N

)

. (4.22)

Even without the last term which is only our conjecture and is not proven, these con-

vergence rates are quite pessimistic. We observe a general explosion in the regression

errors as we cascade through the number of switches k, cf. the second term in (4.22).

This would suggest that to obtain any convergence, the projection plus sampling

errors must be decreasing exponentially in k. In the best case (with adaptive choice

of (Bj)), we expect the projection error to decrease exponentially in the number of

basis functions NB, so the latter needs to grow linearly with k. However, an implicit

issue that is hidden above is the relationship between NB and N . Namely, for a

given number of basis functions, how many Monte Carlo paths are needed to obtain

a comparable sampling error. Unfortunately, Glasserman and Yu [41] give a negative

result and show that in the worst case one may need as many as eNB

paths. It follows

that to compute J K̄ we must use at least N ∼ (∆t)−K̄ paths, which would make the

computations intractable.

In practice the LS scheme avoids repeated conditioning and therefore regression

errors are accumulated only when a switch or a wrong switching decision is made.

On a given path, instead of M regression errors, we should only see O(1). As a

result, we conjecture that the total error grows linearly in the maximum number of

switches K̄, which is what we seem to observe in practice. To prove this analytically,
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one probably should use the fact that the barrier M̂k,i is closely related to the

current Ŷ k,i, and so the various errors in the barrier cancel out the errors in the

regression approximation. This would produce tight bounds on expression of the

form E[Ŷ k,i
t2 ∨ M̂k,i

t1 ] in terms of E[Ŷ k,i
t2 ] and E[M̂k,i

t1 ], cf. (4.19) and proof of (4.17).

From our extensive experimentation with the method, it seems that forM < 1000

the algorithm is quite stable. The corresponding discretization step ∆t should be

good enough for most financial problems. The real key to successful implementation

is a correct estimate of the number of layers K̄ and a judicious choice of the basis

functions (Bj). After that N ∼ 20000 simulated paths seem to be more than enough

for examples we tried.

To check the actual rate of convergence with respect to the size of the Monte Carlo

simulation we run Example 4.2 using 2000− 24000 paths and tabulate the resulting

means and standard deviations over 50 separate runs in Table 4.1. We used six

basis functions in this case and 400 time steps. We see that the variance decreases

by about 40% when we double the number of simulations and then stabilizes as

the remaining error is mostly coming from the projections and not from the Monte

Carlo. We also see that in this example the value is decreasing, approaching the

‘true’ value of 5.931.

No. Paths Mean Std. Dev

2000 6.90 0.37
4000 6.44 0.30
8000 6.16 0.22
16000 5.90 0.19
24000 5.86 0.17

Table 4.1: Convergence of Monte Carlo simulations for Example 4.2.
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4.4 Numerical Examples

We now give a series of numerical examples to illustrate the algorithm and the

problem structure in different settings. Example 4.1 is the most basic one and has a

one-dimensional time-homogeneous diffusion (Xt) with two regimes. Example 4.2 is

the ‘generic’ one, with a two-dimensional diffusion (Xt) and three regimes. Example

4.3 shows the case where (Xt) has both jumps and seasonality. Finally, Example

4.4 shows a multi-dimensional, multi-mode setup with Xt taking values in R
3 and

M = 5.

Example 4.1. In our first example, we consider a simple one-dimensional Ornstein-

Uhlenbeck driving process:

dXt = 2(10 −Xt) dt+ 2 dWt, X0 = 10,

with time horizon T = 2, and delay (or rather switch separation) δ = 0.02. We have

two regimes with continuous reward rates of ψ0(Xt) = 0 and ψ1(Xt) = 10(Xt − 10),

and the switching cost between them is C = 0.3.

Figure 4.2 shows the output from the LS scheme for Example 4.1, using 200 steps,

8000 paths, and successive levels k = 1, 2, . . . , 8. The initial regime is ‘off’, and the

increasing curves correspond to the number of ‘on-off’ switches available. The plot

shows each Jk(t, x, 0;T ) as a function of t, which due to the time homogeneity equals

the expected total profit with horizon T − t. As we get further away from maturity,

each separate value function Jk flattens out because the time decay becomes less

relevant. The total value function J = supk J
k approaches linear growth in time

to maturity since the stationary nature of (Xt) translates into an asymptotic fixed

earnings per unit time ratio.

Figure 4.3 shows the switching thresholds in Example 4.1 as a function of time

for two different levels k. The top boundary is for switching from regime 1 to regime

2 and the bottom is from regime 2 to regime 1. The area in between is the hysteresis
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Figure 4.2: Value functions Jk(t, x, 0) as a function of t for Example 4.1.

band where no switching takes place (note that at-the-money is always x = 10).

Thus, if we the plant is ‘off’, it will be brought online only when Xt is about 10.8.

The left panel plots the boundaries for k = 2. Far from maturity T the boundary

is slowly increasing, as more time implies availability of more profitable switching

opportunities. Closer to maturity, the time decay becomes significant and makes the

agent less ‘picky’ in choosing the threshold to switch. Even a small expected profit

is worthwhile to capture since little time is left. Finally, very close to maturity, the

time decay dominates and the fixed cost is larger than any gain from switching. As

a result, the switching boundary widens dramatically near T . For large k (the right

panel in Figure 4.3), the exercise boundary is essentially flat after a sharp curve

close to expiration, as time stationarity and large number of allowed switches make

time decay insignificant. This parallels the situation with infinite horizon where the

switching boundary is constant.

Example 4.2. The generic case of a spark spread, Xt = (Pt, Gt) representing prices

of power and gas respectively (for parameter meaning see (3.4)):














log(Pt) ∼ OU(κ = 2, θ = log(10), σ = 0.8), P0 = 10,

log(Gt) ∼ OU(κ = 1, θ = log(10), σ = 0.4), G0 = 10, ρpg = 0.7.
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Figure 4.3: Optimal Exercise Boundaries for Example 4.1 for different levels k. The
decreasing boundary around t = 0 is an artifact of the Monte Carlo.

We solve the switching problem on [0, 0.5] with regime rates of ψ0(Xt) = 0, ψ1(Xt) =

10(Pt − Gt) and ψ2(Xt) = 20(Pt − 1.1Gt), and switching costs Ci,j = 0.25|i − j|.

This example will be used for benchmarking in Section 4.6, see Table 4.4.

Example 4.3. Our third example shows that the method works also with jumps and

time-dependent parameters. Let us consider the original spark-spread model with

d logPt = 6 · (p̄t − logPt) dt+ 0.5 dWt + ξtdNt, P0 = 10,

d logGt = 1 · (10 − logGt) dt+ 0.4 dW⊥
t , G0 = 10, ρpg = 0.7,

with p̄t = 10·[0.95+0.05 cos(2πt)] meant to represent seasonal fluctuation in electric-

ity prices where the summer is consistently more expensive. (Nt) is an independent

Poisson process with intensity λ = 0.02 and ξt ∼ exp(0.1), so that jumps are always

upwards with a mean of 10% increase in price. There are two regimes again with

the reward rates of ψ0(Xt) ≡ 0, ψ1(Xt) = 10(Pt −Gt) and switching cost C ≡ 0.5.

For the seasonal Example 4.3, on the horizon of one year counting from July 1 to

June 30th, it follows that the plant should rarely be operated in the winter around

t = 0.5, when the mean power price is under $9. However, as Figure 4.4 shows there

are still sizeable gains to be made in the winter (over 10% of expected gains are

generated in the three middle months). The possibility of price spikes or just large
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enough fluctuations in (Pt) has value that can be exploited through plant flexibility.

Of course, if large fixed costs can be avoided by complete shutdown it may still be

optimal to close down the operations for the winter.
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Figure 4.4: Value function for Example 4.3 showing expected cumulative profit
EH(x, ‘off’, [0, t];u∗) as a function of time t.

Example 4.4. The last example of this section illustrates the structure of optionality

for a multi-commodity spread option. We consider a dual gas/crude oil power plant

that can use either fuel depending on market conditions. The driving process is

Xt = (Pt, Gt, Ot) where (Ot) is the price of crude oil. Its dynamics are


























log(Pt) ∼ OU(κ = 2, θ = log(10), σ = 0.8), P0 = 10,

log(Gt) ∼ OU(κ = 1, θ = log(10), σ = 0.4), G0 = 10, ρpg = 0.5,

log(Ot) ∼ OU(κ = 1, θ = log(10), σ = 0.4), O0 = 10, ρpo = 0.3, ρgo = 0.

There are four possible regimes besides complete shutdown ψ0(Xt) ≡ 0:

ψ1(Xt) = 5 · (Pt −Gt), ψ2(Xt) = 5 · (Pt −Ot),

ψ3(Xt) = 5 · (3Pt − 4Gt), ψ4(Xt) = 5 · (3Pt − 4Ot).

We take Ci,j ≡ 0.25 and also experiment with the delay setting, since switching a

plant from one fuel to another is likely to take a long time. Hence we try the time-

separation parameter δ = 0.01, 0.02, 0.04 (up to two weeks) with T = 1 a horizon of
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one year. As Table 4.2 shows, high δ significantly lowers the profitability, as does

removal of regimes. For example, without regimes 3 and 4 which are initially 30%

out of the money, the expected profit drops from 13.28 to 8.99. Similarly, if the plant

could only run on gas, the expected profit nearly halves to just 7.06.

Regimes Avail. Delay Setting Value Function

All PDE FD 13.31
All δ = 0.01 13.28
All δ = 0.02 12.49
All δ = 0.04 11.54

0 − 3 δ = 0.01 10.41
0 − 2 δ = 0.01 8.99
0, 1, 3 δ = 0.01 7.06

Table 4.2: Summary of results from Example 4.4. We ran the LS scheme with 400
steps and 16000 paths. The first method is the finite differences PDE solver with no
delay used for comparison.

Constructing Optimal Policies

Using the switching boundaries obtained from our algorithm, it is now straightfor-

ward to construct the optimal policy that can be implemented given a realization of

(Xt). Suppose we computed J K̄ and our initial regime is u0. Then we keep track of

the switching sets Switchu0,j for all j 6= u0 corresponding to the K̄-th level. At the

first time t that Xt ∈ Switchu0,j we switch to mode j. We then begin to monitor

the switching boundaries of the (K̄ − 1)-th level and continue accordingly until T .

It remains to keep track of the profits and losses along the way corresponding to

the employed strategy. An illustration of this method for Example 4.1 is shown in

Figure 4.5. The top panel shows the successive switching boundaries and a realized

path of Xt. Observe the slight jumps of the boundaries at the switching times when

the level changes. The bottom panel shows the total cumulative wealth obtained

from the policy. The discrete switching costs are indicated by drops of C = 0.3 at

the switching times.
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Figure 4.5: Implementing optimal policy for Example 4.1.

4.5 Comparison to Other Numerical Methods

The optimal switching problem allows for several other numerical methods of solu-

tion. Roughly speaking, there are three possible strategies. First, one can directly

tackle the quasi-variational formulation of Section 3.6 using partial differential equa-

tion (PDE) solvers. Second, one can attempt to replace the continuous-space dy-

namics of (Xt) by some sort of discrete approximation. For this approximation one

can then apply the dynamic programming approach directly. Finally, one can look

for other means of computing conditional expectations in (4.1) besides the proposed

Monte Carlo regression scheme. In this section we outline in turn each of these

three approaches and finish by running a set of benchmarks to evaluate the relative

performance and accuracy of our scheme.

PDE Solver

The PDE solver relies on the quasi-variational formulation of Proposition 3. The

stochastic control problem is transformed into a parabolic partial differential equa-
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tion with a free boundary. These have been heavily studied, and a variety of tools

are available, see for example the references in Chapter 7 of Wilmott et al. [70]. For

instance, consider the basic finite differencing (FD) algorithm. We begin by setting

up a space-time grid (for simplicity take it to be uniform with steps ∆t and ∆x in

time and space respectively). On this grid we solve


















ut(t, x, i) + µ(x)u′(t, x, i) + σ(x)2

2
u′′(t, x, i) + ψi(x) = 0,

u(t, x, i) > maxj 6=i(−Ci,j + u(t, x, j)),

u(T, x, i) = 0,

by replacing derivatives with finite differences in the first equation and directly en-

forcing the barrier condition at each step. Using the standard properties of the

infinitesimal generator LX , u(0, x, i)
∆t→0,∆x→0−−−−−−−→ J(0, x, i). The free boundary can

be determined by keeping track of the index j in the max argument of the barrier

condition. An FD method is easy to implement but suffers several major drawbacks.

First, numerical stability often requires taking a large number of time steps. Sec-

ond, the method suffers from dimensionality problem: the size of the space grid is

exponential in number of dimensions d and generally speaking d > 3 is computation-

ally infeasible. Finally, the switching boundary will inevitably be jagged due to the

presence of a grid in the x-space. The last point can be alleviated with the use of an

adaptive grid. The method’s accuracy depends on the order of the approximation

used for the derivatives of u, which should be at least O(∆t+ ∆x2).

Markov Chain Approximation

The Markov chain approximation method pioneered by Kushner [52] consists in

replacing (Xt) by a continuous time Markov chain (X̃t) with a finite state space

Ẽ, such that its transition probabilities (P̃t) are consistent with the dynamics of

(Xt). The final implementation is similar to the PDE solver since the transition

probabilities are computed through the infinitesimal generator LX of (Xt) which

leads back to the finite differences approximations of the HJB equation.
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For notational simplicity we will work with a one-dimensional (Xt). Take a

rectangular grid (xn, tm) = (x0 + n∆x,m∆t), 0 6 n 6 Mx, 0 6 m 6 M ]. Thus our

finite base space is Ẽ = {x0 + n∆x} ⊂ E and appropriate boundary conditions will

also be required. Next we assume that in one time step ∆t, X̃ moves at most one

point in the grid, meaning that the transition probability of going from (x,m∆t) to

(y,m∆t+ ∆t), which we denote by Pm(x, y) is zero unless y ∈ {x, x+ ∆x, x−∆x}.

To solve for Pm we need consistency conditions which make the dynamics of (X̃t)

match the dynamics of (Xt). If we match the first two moments, then














E[X̃(m+1)∆t| X̃m∆t = x] − x = µ(x)∆t and

V ar(X̃(m+1)∆t| X̃m∆t = x) = σ2(x)∆t.

Next we must decide whether Pm is given explicitly or implicitly. For example,

the upwind implicit version for computing the conditional expectation Ĵk(t1, x, i) =

E[Jk(t2, Xt2 , i)|Xt1 = x] is:

[

1+σ2(x)
∆t

∆x2
+ |µ(x)|∆t

∆x

]

Ĵk(t1, x, i) =
[σ2(x)

2

∆t

∆x2
+ µ+(x)

∆t

∆x

]

Ĵk(t1, x+∆x, i)

+
[σ2(x)

2

∆t

∆x2
+ µ−(x)

∆t

∆x

]

Ĵk(t1, x− ∆x, i) + Jk(t2, x, i), (4.23)

where x+ M
= max(x, 0) and x−

M
= −max(−x, 0)). This can be formally re-written as

Ĵk(m∆t, x, i) =
∑

y∈Ẽ

Pm(x, y) · Ĵk(m∆t, y, i) + Pm(x, x) · Jk((m+ 1)∆t, x, i)

indicating the dynamic programming analogy. Solving such an implicit system only

involves inverting a tri-diagonal matrix. Thus the code is O(1/∆t) fast. After

Ĵ(m∆t, x0 + n∆x, i) is solved for, we simply mimic (4.1):

Jk(m∆t, x0 + n∆x, i) =
(

Ĵk(m∆t, x0 + n∆x, i) + ψi(m∆t, x0 + n∆x)∆t
)

∨ max
j 6=i

(

Jk−1(m∆t, x0 + n∆x, j) − Ci,j

)

.

Like the PDE solver, this algorithm suffers from the curse of dimensionality and

is not robust to extensions. Nevertheless, in low dimensions it provides a reliable
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benchmark. We have implemented the basic explicit scheme for dimensions one

through three, and the implicit scheme in one dimension.

Quantization Method

A powerful non-Markovian version of the above method with an adaptive approxi-

mating grid is the so-called Quantization Scheme. The main motivation of quantiza-

tion is to find a small and efficient approximating grid in exchange for giving up the

Markov property and closed-form formulae for Pm. The latter is instead computed

via a Monte Carlo simulation. While this is likely to be slow, it can be done just

once off-line and stored for later calculations. The gain is increased robustness and

much better dimensional scaling.

To implement the quantization method we need two major ingredients: the state

spaces Ẽ = {Ẽm}M]

m=0 and the transition matrices P̃ = {Pm}. The location sites

Ẽm = {xk
m}, k = 1, . . . , Nm, called the quantization grids, should be a cloud of Nm

points optimal in the sense of approximating well the distribution of Xm∆t. More

precisely, we want E
[

mink ‖Xm∆t − xk
m‖2

]

to be small. The proper way to think

of the quantization grid is as a partition of E ⊆ R
d into cells. The cells are the

Voronoi tessellations {Ck
m} such that Ck

m
M
= {x ∈ R

d : ‖x − xk
m‖ = mink ‖x − xk

m‖}

is the set of all x’s closest to xk
m. The transition matrices Pm are then required to

approximate closely the dynamics of (Xt) between cells of the adjacent quantization

grids. Namely, we would like

Pm(i, j) ' P

[

X(m+1)∆t ∈ Cj
m+1

∣

∣

∣
Xm∆t ∈ Ci

m

]

.

Note that the quantized process X̃m∆t =
∑

k x
k
m · �Ck

m
(Xm∆t) obtained by picking the

nearest neighbor on the quantization grid, is not Markov, so the above expression is

ill-defined and we really should be conditioning on the entire path of (Xt). Algorith-

mically (Ẽ, P̃ ) is constructed by simulation. In particular, Bally et al. [5] propose

the Competitive Learning Vector Quantizer (CLVQ) algorithm for dynamically con-
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structing the grid. The basic concept is to simulate N paths (x`
m∆t, ` = 1, . . . , N)

of (Xt) and at each stage to pick the ‘winner’ indices im(`) satisfying x`
m∆t ∈ Cim

m .

Now we simply approximate with the empirical average

Pm(i, j) =
card

∣

∣x`
m∆t ∈ Ci

m, x
`
(m+1)∆t ∈ Cj

m+1

∣

∣

card
∣

∣x`
m∆t ∈ Ci

m

∣

∣

. (4.24)

The CLVQ further improves by slightly adjusting the grid Ẽm given the simulated

paths in order to obtain the best possible (in-sample) quantizing grid. Bally et al. [5]

show that the resulting speed of convergence to the true Snell envelope in a standard

optimal stopping problem is O
(

(∆t)1+d
�

m Nm

)

, and the Lp error of the quantization grid

itself is O((
∑

mNm)−1/d). They also show that there is a gain from using variable

grid sizes Nm with smaller grids towards t = 0 and larger grids around t = T .

Heuristically, a grid size of 500−1000 points is usually sufficient in dimension d < 3.

Figure 4.6 shows an optimal quantization grid for the 2-d exponential OU process

of Example 4.2 using 600 sites.

Once (Ẽ, P̃ ) is computed, we solve the optimal switching problem by formally

computing the pseudo-Snell envelopes of the non-Markov (X̃t) using the familiar

recursion (both sides are vectors now):

Jk(t1, Ẽt1 , i) = max
(

ψi(t1, Ẽt1) ∆t+ Jk(t2, Ẽt2 , i) · P ′
t1
,

max
j 6=i

{

−C|i− j| + Jk−1(t1, Ẽt1 , j)
}

)

. (4.25)

The advantage of the quantization method is its robustness, since the entire

algorithm for constructing (X̃t) is Monte Carlo based. Moreover, the simulations

themselves are straightforward and can be parallelized. Once the grids and transi-

tions are computed, any control problem can be solved because the approximation

of (Xt) is independent from the optimization step. Contrast this with the regression

method where the basis functions are customized to the payoff functions ψi.
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Figure 4.6: Example of optimal quantization grid for Example 4.2. We use 600
points and the grid for standard 2-d Brownian motion from Gilles Pagés webpage
[63].

The difficulty with quantization is estimating P̃ . When there are many cells,

each Ck
m shrinks, causing the estimate in (4.24) to have high variance since both

the numerator and denominator are very small. Thus, one is forced to run a huge

number of simulations (often as many as 106) to achieve an acceptable accuracy.

One solution, proposed by Mrad et al. [59]3 is to treat Ck
m as a single point and

to approximate the joint density in (4.24) by using Malliavin integration by parts.

The authors claim a great numerical improvement, but further analysis is needed to

understand when it is acceptable to replace the cell Ck
m by a Dirac mass at xk

m.

Nonparametric regressions

The final alternative we discuss concerns directly our own method of discretizing the

Snell envelope. As we mentioned before, this approach reduces to computations of

conditional expectations. The latter can be obtained by several methods, includ-

ing Malliavin calculus [11], Monte Carlo simulations and regression. In particular,

among regression schemes we still have a choice between regression against basis

functions that we performed versus fully non-parametric regression. Choosing a

3I am grateful to Nizar Touzi for pointing out this reference to me.
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non-parametric regression relieves us of the concerns regarding selecting appropriate

basis functions and may produce smoother conditional distributions [64].

We have explored the simplest version of this approach, namely k-nearest neigh-

bors multivariate kernel regression. Given a set of simulated paths (x`
m∆t) like in

Section 4.1 and setting y`
m+1

M
= J((m+ 1)∆t, x`

(m+1)∆t, i) we approximate

x 7→ E

[

J((m+ 1)∆t,X(m+1)∆t, i)
∣

∣Xm∆t = x
]

by x`
m∆t 7→

k
∑

i=1

wαi
y`

m+1,

where αi are the k nearest neighbors of x`
m∆t ∈ R

d and

wαi
=

K( 1
h
· (x`

m∆t − xαi

m∆t))
∑k

i=1K( 1
h
· (x`

m∆t − xαi

m∆t))
.

The kernel K : R
d → R+ is a smooth C∞ function which integrates to one and is

centered at zero. For instance, a classical choice is the Gaussian kernel,

K(x) =
1

√
2π

d
e−‖x‖2/2.

Thus, the regression is replaced by a local linear combination of the other paths’

values with the weights proportional to the distance. The use of nearest neighbors

is to reduce the curse of dimensionality. The simple kernel regression algorithm that

uses all points would have complexity O(N2). By contrast, the complexity of the

k-nearest neighbors version is O(N logN + kN) since we need to compute N sums

of k terms, and to select those k terms we need to sort once the whole data set.

Hence taking k ∼ logN we only do O(N logN) work. In more than one dimension

selecting nearest k neighbors in O(N logN) time is challenging. A simple scheme is

to pick a variable number of neighbors instead. We first sort over one coordinate,

and then define an adaptive hypercube for the neighbors in the other coordinates.

Namely we fix parameters N1 and D and for a given site x ≡ (x1, . . . , xd) ∈ R
d pick

Nbr(x) = {x` : |x`
1 − x1| is amongN1 smallest values, |x`

j − xj| 6 D for j = 2, . . . , d}.
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The kernel estimator converges to the true conditional expectation with the speed

of O(N−1/2), however it is usually biased [19]. It is attractive due to its robustness,

since besides averaging no additional error is introduced. However, the two major

difficulties with the kernel method are selecting an appropriate bandwidth and the

computations around the edges. The bandwidth h controls the peakedness of the

weights around (x, y). Thus, as the bandwidth increases, more distant points carry

more weight and the estimate becomes more ‘global’. However, choosing h is heuristic

and may require a lot of trial-and-error. The other difficulty is when the regressed y`

is extreme. Consider, for example, the situation when y`
m+1 = maxi y

i
m+1. Then all

the neighbors of (x`
m∆t, y

`
m+1) have smaller y-values causing the estimate at x`

m∆t to

be necessarily underestimated. Observe that by contrast, the regression algorithm

does not have any inherent bias for extreme response values.

4.6 Benchmarking

As mentioned in introduction, we do not know of any papers that have solved a

switching problem on a finite horizon. Therefore, to verify our numerical results

we initially benchmarked our scheme in the easier American option setting. More

precisely, we adjusted our algorithms to solve the 2-dimensional American exchange

option that is discussed in Villeneuve and Zanette [68].

The reference problem is pricing the American put option paying out (K −

min(S1
τ , S

2
τ ))

+ where (S1, S2) follow the two-dimensional Black-Scholes model














dS1
t = log(1.05) dt+ 0.3 dW 1

t ,

dS2
t = log(1.05) dt+ 0.2 dW 2

t

with d〈W 1,W 2〉t = 0.5 dt. The option is at the money with K = S1
0 = S2

0 = 40

and the maturity is T = 7/12, seven months. The reference value is 3.8958 from

[68, p. 147]. We recomputed this option value using our homegrown versions of

the Longstaff Schwartz (LS), Tsitsiklis van Roy (TvR), Kernel, Quantization and
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Markov Chain approximation (i.e. PDE FD) methods. The results are in Table 4.3.

All the regression methods used 400 time steps and 10000 paths. The PDE solver

used 20000 steps and a 400×400 grid in space. For the quantization method we used

N = 250,000 and grids with sizes up to Nm = 600 taken from [63]. The variance was

obtained by running each algorithm 50 times and the timing is relative to a Pentium

4, 1.8GHz desktop.

On this simple problem all methods did very well. We see that the PDE solver

did the best, exactly reproducing the reference value. However, it was quite slow.

The second best was surprisingly the LS scheme. The kernel algorithm was quite

erratic and required a lot of finetuning. The quantization did not perform very well,

however we have not finetuned it at all and a smarter implementation should do

much better. Note that the given time of nearly seven hours is for computing all

the transition probabilities (Pm). However, once they are computed any optimal

stopping problem for (S1, S2) can be solved almost instantaneously.

Method Mean Std. Dev Time (m)

Explicit FD 3.8955 − 7.5
LS Regression 3.929 0.03 0.8
TvR Regression 4.213 0.02 0.8
Kernel 4.078 0.06 3.1
Quantization 4.025 0.01 400∗

Table 4.3: Benchmark results for the two-dimensional American minimum put op-
tion. The quantization method time is for computing P̃ . See comment in text.

We proceed to benchmark our computation of Example 4.2. We choose this case

because it is two-dimensional and has three regimes, which can be viewed as a generic

setting of our problem. Again, we repeat the results using all methods listed above.

In absence of third party reference value we assume that the PDE solver is the most

accurate since its error for this problem should be comparable to the error on the

American put which was negligible. This time the kernel method performed best,

however we believe this is just a lucky coincidence. The LS scheme did very well,



73

though its variance was quite high. In contrast, the TvR scheme had smaller variance

but a very strong bias, confirming the superiority of the Longstaff-Schwartz approach.

The quantization performed acceptably and again a better implementation should

make it competitive.

Summarizing, in small dimensions (d < 3) the best algorithm is the PDE solver.

An industrial-strength implementation should be very fast and produce provably

accurate results. However, the PDE approach becomes infeasible as soon as d > 2,

as grid sizes approach 106 points. Thus, for scalability to high dimensional problems

the LS and Quantization schemes should be used. The choice between those depends

on the environment. If one is looking for a quick tool to solve optimal switching for

a variety of (Xt), the LS scheme is best. On the other hand, if (Xt) is fixed, the

quantization may be better as one has time to compute a superior approximation of

P̃ and then use it to price any (Xt)-tolling agreements within seconds.

Method Mean Std. Dev Time (m)

Explicit FD 5.931 − 25
LS Regression 5.903 0.165 1.46
TvR Regression 5.276 0.096 1.45
Kernel 5.916 0.074 3.8
Quantization 5.658 0.013 400∗

Table 4.4: Benchmark results for Example 4.2. Computational settings are same as
for Table 4.3.

4.7 Comparison to Practitioner Methods

Let us briefly summarize the tools that have been used by practitioners to solve the

operational flexibility problem. Early on the standard approach was the classical net

present value theory. It used discounted cash flow analysis to estimate the value of

the asset based on projections of future prices and proper weighing and discounting of

possible cases. Uncertainty was essentially eliminated, as static scenarios were used

to forecast the future and select pre-determined optimal behavior. The opportunity
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of dynamically responding to prices was ignored and as a result the contracts were

consistently underpriced [26].

In late 1980s, the stochastic programming approach, also called Markov Decision

Processes (MDP) became popular. The terminology of MDP’s is rather different,

but in effect they are tree-based versions of the stochastic control formulation. The

problem is discretized in time and the path space of (Xt) is broken into a finite

number of scenarios. Then the transition probabilities P (x, y; ∆t) are estimated (by

simulation or analytical approximation) for each current outcome x and possible

transition scenario y. Finally, the problem is solved via dynamic programming that

corresponds to a lattice discretization of the QVI :

J(t1, x, i) = max
j

{

−Ci,j +
∑

y

Pt1(x, y) · J(t2, y, j)
}

.

Like with American options, the MDP tree is simple to write down and intuitive

to understand. An example of explicit solution for a simple switching problem can

be found in [71]. However, if one must solve numerically then the computational

complexity explodes for long horizons with many optionalities.

With the advent of financial engineering, the new widely used method for pricing

tolling agreements is the strips of spark-spread options approach [38]. The motivation

is to reduce the problem to pricing standard financial options whose valuation is

well understood. Accordingly, the payoff from the power plant is represented as a

collection of European options that pay the maximum value to be obtained during

each period. Each such option is of the spark-spread variety with maturity Tm =

m∆t. If for simplicity we consider just two regimes ‘off’ and ‘on’, the overall value

of running the power plant is approximated by

V (0, x; ∆t) = E
x
[

M]
∑

m=0

πm∆t(Pm∆t −HR ·Gm∆t −K) · ∆t
]

, (P0, G0) = x. (4.26)

Above πm∆t is the exercise decision variable, equivalent to the policy u used in

the control framework. In the no-delay setting we allow the plant to be switched
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instantaneously, so that πt =
�

Pt>HR·Gt+K producing the classical spread option.

With delay we require πt ∈ Ft−δ to be predictable beforehand, so the option expires

before maturity.

Let us stress that the strip approximation introduces two major simplifications.

First, it ignores the time-dependency of the optimal policy and the hysteresis band

resulting from presence of switching costs. Second, it eliminates the time decay

due to finite-horizon features of the contract4 . Nevertheless, the method remains

immensely popular. One reason is that for many processes (Xt) (in particular the

conditionally Gaussian case) there are efficient closed form approximations to spread

options that are very fast to compute and provide good bounds not just on the price

but also on the sensitivities [15]. As a result, the general intuition that practitioners

have built up for dealing with vanilla options can be directly transferred.

For direct comparison of the two valuations, the major obstacle is the switching

cost Ci,j. Indeed, as the next proposition shows, without switching costs the two

approaches are equivalent.

Lemma 4. Let C = supi,j Ci,j. In the limit of vanishing switching costs C → 0

the discretized value function J(0, x, i) of optimal switching converges to the value

function V (0, x) coming from the spark spread approximation.

Proof. Fix a time step ∆t and current time t1 = m∆t. For simplicity we work

without delay and with K = 0, in which case

V (m∆t, x) = E

[

M]
∑

j=m

(Pj∆t −HR ·Gj∆t)
+ · ∆t

∣

∣Xm∆t = x
]

.

4To account for some of the operational constraints other variants have also been considered,
for instance swing options [17] that limit the total number of exercises.
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Clearly, V (t1, x) is the maximum value that one can extract from the plant since

there are no operational constraints, so trivially V (t1, x) > J(t1, x, i). By a basic

conditioning,

V (t1, x) = E[V (t2, X
t,x
t2 )|Xt1 = x] + (Pt1 −HR ·Gt1)

+ ·∆t. (4.27)

On the other hand, for any x there exists mode i such that ψi(x) = (Pt1−HR ·Gt1)
+.

For this mode i,

J(t1, x, i) > E
[

J(t2, X
t,x
t2 , i)|Xt1 = x

]

+ ψi(x)∆t,

and combining with (4.27),

|J(t1, x, i) − V (t1, x)| 6 E
[

|J(t2, X
t,x
t2 , i) − V (t2, X

t,x
t2 )|

∣

∣Xt1 = x
]

Now we use the fact that |J(t, x, i) − J(t, x, j)| 6 C to get

sup
x

max
i

|J(t1, x, i) − V (t1, x)| 6 C + sup
x

max
i

|J(t2, x, i) − V (t2, x)|.

Inducting on t1, we get supx supt |J(t, x, i) − V (t, x)| 6 M ] · C and taking the limit

C → 0 we are done.

Returning to the case when Ci,j’s are significant, we observe that with the strip of

options approach Ci,j does not enter into the decision process so that many exercises

are made to capture relatively small gains. One solution to correct for this could be

to increase the strike price of the option to include the switching cost. However, this

still ignores the time-series properties of running the plant which form a significant

component of the total price. Indeed, once we switch ‘on’, there is a high probability

of being in-the-money in the next time period as well. A better fix is first to compute

the unadjusted V (t, x) and then estimate the corresponding number of switches. For

instance, assume that we switch off immediately after reaching zero profitability, and

switch on as soon as the spread is at least Pt−HR ·Gt > a for some threshold a > 0.
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Ideally a is equal to the true switching boundary, but any rough estimate would do.

Then the approximate number of switches is equal to the number of downcrossings

by Pt − HR · Gt over the interval [a, 0]. Each downcrossing corresponds to an ‘on-

off’ control and therefore costs C0,1 + C1,0 that we subtract from V (t, x). In reality

profitable paths will remain in-the-money for a long time and therefore will have

few downcrossings, while the paths with many downcrossings will always stay close

to at-the-money and therefore would not be worthwhile to exercise. In this light,

the adjusted strip estimate is a lower bound, since it will overestimate the switching

costs.

For a one-dimensional Orstein-Uhlenbeck process, the distribution of downcross-

ings may be analytically computed. Using the explicit formula for Laplace transform

of a hitting time we have [39]

E[T down
0,a ] =

√

π

2

∫ a

−a

(1 + erf(t/
√

2)) · et2/2 dt,

V ar[T down
0,a ] =

√
2π

∫ a

−a

∫ t

−∞

∫ a�{t>0}

s

(1 + erf(r/
√

2)) · e(r2+t2−s2)/2 dr ds dt,

where T down
0,a is the time for a standard OU process to complete one downcrossing

across (a, 0). For the range of interest this shows that the expected number of

downcrossings is O(a−3/2). To illustrate, consider Example 4.1 with switching cost

of C = 1. The optimal value for the stochastic control model comes out to be about

J(0, 10, off) = 4.23. On the other hand, the expected profit from a strip of spread

options is V (0, 10) = 7.65. Using as our guide the exercise boundary in Figure 4.3,

a downcrossing interval of [10, 11] yields 1.93 switches on average for a final profit of

3.8, which is within 10% of the true value. In more general situations, the number

of downcrossings can be estimated by a simple Monte Carlo simulation.

Remark 3. Analysis of downcrossings of (Xt) can also shed light on the error between

Jk and the true value function J . Indeed, the probability that more than k switches

are needed for optimal strategy can be bounded from above by some conservative
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estimate on the number of ‘profitable switching opportunities’ which are closely

related to (Xt) crossing the switching boundaries. Of course the true switching

boundary is unknown but we can get a good estimate from the boundaries of Jk.

4.8 Simulating Mean-Reverting Processes

All the numerical algorithms described in this chapter require simulation of (Xt) so

let us address this issue briefly. We first concentrate on the ‘classical’ setup from

(3.4), where the pair of price processes (Gt, Pt) follow a two-dimensional exponential

Ornstein Uhlenbeck process. For convenience we will work with their logarithms

(P̄t, Ḡt) ≡ (logPt, logGt) which therefore satisfy

dP̄t = κp(θ̄p − P̄t) dt+ σp dW
1
t ,

dḠt = κg(θ̄g − Ḡt) dt+ σg dW
2
t ,

with d〈W 1,W 2〉t = ρ dt and θ̄i = θi − σ2
i

2κi
. Recall that given an initial condition

(g0, p0), the process is Gaussian and the conditional mean and covariance of (P̄t, Ḡt)

are explicitly given by [15]

E[P̄t|Ps, Gs] = θ̄p + e−κp(t−s)(logPs − θ̄p),

V ar[P̄t|Ps, Gs] = σ2
p

(1 − e−2κp(t−s))

2κp

similarly for Ḡt,

E
[

P̄t · Ḡt|Ps, Gs

]

= ρσpσg
1 − exp(−(κg + κp)(t− s))

κg + κp

.

This implies that (Pt, Gt) are conditionally log-normal and the process can be simu-

lated exactly, eliminating SDE discretization error when computing Xm∆t. Note that

the explicit formulae pertain even when the mean reversion level is time-dependent,

e.g. θp = θp(t). In this case,

E
[

P̄t

]

=

∫ t

0

κpe
κp(s−t)(θp(s) −

σ2
p

2κp

) ds+ e−κpt logP0,

with same variance as before.
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Mean Reversion with Jumps

We can also easily incorporate Poisson jumps with deterministic intensity in either

Pt or Gt. This means that the SDE for, say, Pt has an extra term dNt, where Nt is a

Poisson process with intensity λ, cf. Example 4.3. To simulate Pt+∆t given Pt, first

simulate the number of jumps on [t, t + ∆t]. Then conditional on Nt+∆t − Nt, the

times of the jumps are uniformly distributed with respect to the cumulative intensity

process. It remains to simulate the size of each jump (which are assumed to be i.i.d.)

and let the process follow the Gaussian OU dynamics between jump times.

On a practical level the problem is that to achieve the large spikes prevalent in

observed power prices the mean-reversion parameter has to be very large. Usually the

resulting estimates of κp are unacceptably large, killing off any volatility besides the

jumps. One solution [50], is to use an additive two-factor model for Pt = P1 t + P2 t,

with one factor P1 t an OU diffusion as before, and a second mean-reverting jump

factor P2 t driven entirely by a Poisson process which is responsible for the jumps.

The attractive feature of such a model is that one can still simulate exactly and

moreover derive closed-form formulae for vanilla options. For further details about

modeling spot prices of commodities we refer to [16] and the references therein.



Chapter 5

Generalizations

5.1 Gas Storage

As opposed to purely financial obligations like stocks and bonds, commodities re-

quire physical storage and consequently often exhibit seasonal price patterns. This

is especially noticeable in energy fuel commodities whose consumption is highly cor-

related with weather. The principal example is natural gas that is used by many

households in North America for heating during the winter. Thus, natural gas de-

mand has a pronounced spike in the cold season. On the other hand, natural gas

supply, obtained by extracting gas from gas fields and moving it through the pipeline

system closer to the end users, is relatively stable. To accommodate the higher win-

ter demand there are all sorts of storage facilities, like salt domes, depleted gas fields

and aquifers that allow for gas to be kept in an easily accessible manner.

Given that short term gas prices are highly volatile and unpredictable, storage

also provides a tool for financial speculation. In particular, salt domes have high

deliverability rate that allows to make speculative bets on intertemporal spreads in

gas prices. As documented by de Jong and Walet [25], “in the liberalisation process,

natural gas storage is unbundled, ... offered as a distinct, separately charged service.

... Buyers and sellers of natural gas have the possibility to use storage capacity to take

80
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advantages of the volatility in prices”. The basic idea is to rent a storage facility and

then to ‘buy low’ and ‘sell high’, such that the realized profit covers the intermediate

storage and rental costs. This is in close parallel to power plant tolling discussed in

the first half of this dissertation. Continuing the analogy, it is now natural to ask

what is the financial value of such a rent contract. Observe that the time structure

and seasonality of prices becomes crucial. As a stylized example, if average gas prices

are $4 per Btu in July and $8 in January, while monthly storage costs are 50c cents,

then one can realize a sure profit of $1 by buying gas in July, forward selling it in

January and storing in between. Such transactions do take place, but they should

be seen as monetizing the economic rent of the storage facility rather than arbitrage.

Indeed, the total amount of storage is limited and the owner has to invest very large

amount of capital and time to build the facility in the first place. We are more

interested instead in dynamic trading that responds to short-term fluctuations. For

us a gas storage facility acts like a straddle on gas prices, making the agent long

volatility. Thus, in this presentation we will ignore the forward curve dynamics and

focus on the ‘real option’ component of storing gas which derives value from the

timing optionality.

To construct a tractable mathematical model we assume that the storage facility

operates as follows. First, gas is transferred in and out by means of a pipeline which

has limited capacity, implying that the transfer rate is fixed by the operational

characteristics. For simplicity, assume that we have a single feasible injection rate

ain and a single withdrawal rate aout in units of MMBtu per time unit. Furthermore,

assume we have a constant storage rate b for storing one MMBtu for one time period.

Finally, assume that changing the operating regime of the facility is costly and costs

C per switch. This cost represents both the effort—one must dispatch workers,

coordinate with the outgoing pipeline, stop/start the decompressors, etc.—and the

time needed to change the operating mode. In practice, storage is subject to many
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other operational constraints. These include upper and lower bounds on inventory,

injection and withdrawal constraints, seepage costs, etc. All these may be time- and

inventory level-dependent, but for now we simply ignore them.

For gas prices we mainly refer to near-month forwards that are by far the most

liquid contract on the market, however overall we remain agnostic about the inter-

pretation of the price process. In any case, letting Gt denote the current gas price

and It the current inventory in storage, the facility can then be in three possible

regimes i ∈ {−1, 0, 1} with corresponding payoff rates given by



















Inject: ψ−1(Gt, It) = −Gt · ain − b It, dIt = ain dt,

Store: ψ0(Gt, It) = −b It, dIt = 0,

Withdraw: ψ1(Gt, It) = +Gt · aout − b It, dIt = −aout dt.

(5.1)

The facility operator would then like to maximize the net profit given that changing

regimes and storage are costly:

J(t, g, c, i)
M
= sup

u∈U(t)

E

[

∫ T

t

ψus(Gs, Is) ds− C

∫ T

t

|du|s
∣

∣

∣
Gt = g, It = c, ut = i

]

. (5.2)

The contract normally specifies that the facility should be returned with the same

inventory I0 as in the beginning. Various buy-back provisions are employed to enforce

violations of this constraint at the end of the storage period. A possible terminal

condition is J(T, g, IT , i; I0) = −C̄ · g|IT − I0|, making the penalty proportional to

the absolute difference with stipulated inventory times the terminal gas price. One

will often also require a specific final mode of the facility, say uT = 0.

The control problem (5.2) is somewhat different because now the dynamics of

(Xt), namely the inventory It, is affected by the control. Nevertheless, we can

reuse the same methodology as in Section 3.3. Define the recursive value functions
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Jk(t, g, c, i) to denote the optimal expected profit to be had starting at time t with

Gt = g, It = c while in state ut = i and having k = 0, 1, . . . switches left:

Jk(t, g, c, i) = sup
τ∈St

E

[

∫ τ

t

ψi(Gs, Is) ds

+ max
j 6=i

{

−Ci,j + Jk−1(τ,Gτ , Iτ , j)
}

∣

∣

∣
Gt = g, It = c

]

. (5.3)

Similar to (3.10), we see that the optimal switching times τ ∗ should be defined by

τ ∗k = inf
{

s ≥ τ ∗k−1 : Jk(s,Gs, Is, i) = max
j 6=i

(

−Ci,j + Jk−1(s,Gs, Is, j)
)

}

∧ T. (5.4)

Let us point out that the inventory process (It) is degenerate in the sense that it

can be deterministically computed from knowledge of initial inventory level I0 and

switching policy u. In particular, in our model if there are no switches on [t, τ), Iτ

is a linear function of It and (τ − t). For instance, if the initial regime is ‘inject’ we

can re-write equation (5.3) as

Jk(t, g, c,−1) = sup
τ∈St

E

[

−
∫ τ

t

ain ·Gs ds+ max
j 6=i

{

− Ci,j − b ·
∫ (τ−t)

0

(c+ ain · s) ds

+Jk−1 (τ,Gτ , c+ ain(τ − t), j)
}∣

∣

∣
Gt = g

]

,

with no mention of It at all. This feature will have important implications for the

numerical implementation below.

The PDE approach has also been explored for gas storage by deriving the QVI

satisfied by the value function [2]. In our case, the basic QVI is















φ(t, g, c, i) > max
j 6=i

(

−Ci,j + φ(t, g, c, j)
)

,

∂tφ(t, g, c, i) + LGφ(t, g, c, i) − ai ∂Iφ(t, g, c, i) + (ai g − b · c) 6 0.

(5.5)

The system can now be solved using, for instance, the FD method. Observe that

even in the simplest case when (Gt) is one-dimensional, the PDE is two-dimensional

in space, making it quite slow.
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5.1.1 Backward Recursion For Inventory Level

The difficulty with solving (5.2) by the usual backward dynamic programming algo-

rithm is that at time t we do not know the optimal current inventory I∗t . Indeed,

starting with I0, I
∗
t depends on the past path of (Gt) and the optimal strategy u∗

on [0, t]. Both are unknown from the point of view of the backward recursion. To

overcome this problem, we simply discretize the I-space and keep Longstaff-Schwartz

regressions in the G-dimension. In this modified algorithm suppose that we know

Jk(t2, g
`
t2
, c, i) along the paths (g`)Np

`=1 for any inventory level c. Now fix the current

inventory level c̄ and regress all the conditional expectations to derive an estimate

for Jk(t1, g
`
t1
, c̄, i) in the same way as in Section 4.2:

Jk(t1, g
`
t1
, c̄, i) =

(

Êt1

[

Jk(t2, ·, c̄+ ai∆t, i)
]

(g`
t1
) + ψi(g

`
t1
, c̄)∆t

)

∨ max
j 6=i

(

−Ci,j + Jk−1(t1, g
`
t1
, c̄, j)

)

. (5.6)

It remains to obtain a full map c 7→ Jk(t1, g
`
t1
, c, i). To do so, vary c̄ by using a grid

of N c values {cj : cj = c0 + j∆c} and then interpolate. In principle, for a fixed ∆t

we can even construct a full grid in the I-dimension and solve the problem exactly.

Indeed, if we are in regime i then in one time step ∆t, the inventory changes by

ai · ∆t and so if we take

∆c ∈ {x : ∃ni ∈ N s.t. x · ni = ai · ∆t ∀i}

then inventory adjustments in all regimes result in an integral number of jumps on

the inventory grid and no interpolation is needed.

The above approach (with or without interpolation) is very time intensive since

we now run a separate regression for each inventory cj, regime i, number of switches

k and time step m∆t. Moreover, we are no longer able to employ the true Longstaff-

Schwartz scheme of approximating the switching times. Because we only have values

for Jk at the grid points (m∆t, g`
m∆t, cj), we must store the conditional expectations
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at every time step. Nevertheless, the algorithm is quite robust and is the simplest

way of dealing with inventory level parameters.

To maintain numerical efficiency it is desirable to eliminate the fixed discretiza-

tion in the I-space that resembles the classical lattice schemes with their bad di-

mensional scaling. Accordingly, we propose the following modification that instead

uses pathwise inventory levels (I`
m∆t). This allows us to do a joint (G, I)-regression

and keep all the features of LS scheme. The idea is to generate for each path

and time point (`,m∆t) a random inventory level I`
m∆t. Then the expected future

profit conditional on I`
m∆t and g`

m∆t is obtained by a double regression in (5.6) of

future values J((m+ 1)∆t, g`
(m+1)∆t, I

`
(m+1)∆t, i) against the Markovian current state

(g`
m∆t, I

`
m∆t)

N
`=1. The extra randomization in (It) allows us to reduce computations

by leveraging the information from other paths. From another angle, the grids for

current Im∆t are now random and we use a global regression (rather than local in-

terpolation) to perform the backward recursion. To perform the 2-d regression it

is likely that a large number of basis functions is needed (about 10 − 15 in our

experience) which in turn means that a large number of simulations is necessary.

Nevertheless, the scheme still handily beats the interpolation method. Furthermore,

viewing It as a generic history variable we suggest that this idea can be applied to

carry out the dynamic programming algorithm for any past-dependent setting.

Example 5.1. For a numerical illustration we consider a facility with a total capacity

of 8 MMBtu rented out for one year. The price process is taken from the data of

[25],

d logGt = 17.1(log 3 − logGt) dt+ 1.33 dWt.
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Observe the very fast mean-reversion of the prices, with a half-life of 20 days. The

initial inventory is 4 MMBtu and the terminal condition is J(T, g, c, i) = −2 · g · (4−

c)+. The other parameters in (5.1) are

ain = 0.06 · 252, b = 0.1,

aout = 0.25 · 252, C = 0.25.

We solve this toy storage problem using three different solvers: an explicit finite-

difference PDE solver discretizing (5.5), a mixed interpolation-regression scheme and

a pure 2-d regression scheme. The results are summarized in Table 5.1. We do not

have an intuition which method is the most accurate, but it is reassuring to see all

three values within 2.5% of each other. Let us also point out the long times required

to run each method indicating the computational challenges involved. In this light,

the 45% time savings obtained by the (G, I)-regression scheme become crucial from

a practical point of view.

Method Mean Std. Dev Time (m)

Explicit FD 6.95 − 55
LS interp 7.11 0.021 47
LS 2-d regression 7.04 0.038 32

Table 5.1: Comparison of numerical results for Example 5.1. The PDE solver used a
400× 400 grid and 10000 time steps. The interpolation scheme used 400 time steps,
10000 paths and 80 grid points in the I-dimension. The 2-d regression used 400 time
steps and 40000 paths. Standard deviations were obtained by running the Monte
Carlo methods 50 times.

Figure 5.1 shows the value function J(t, g, c, i) as a function of current price and

inventory for an intermediate time t = 0.5 and mode ‘store’. Not surprisingly, higher

inventory increases the value function since one has the opportunity to simply sell

the excess gas on the market. In the Gt-direction we observe a parabolic shape with

a minimum around Gt = 3. This suggests that deviations of Gt from its mean imply

higher future profits, confirming our intuition about storage acting as a straddle.
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Figure 5.1: Value function surface for Example 5.1 showing J(0.5, g, c, ‘store‘;T = 1)
as a function of current gas price Gt = g and current inventory It = c.

5.2 Hedging Supply Guarantees

The model developed in the previous section can be used as a foundation for ana-

lyzing the problem of hedging firm supply contracts which are common in the power

industry. The basic setup postulates that an energy merchant signs a fixed price

contract guaranteeing delivery of power to a utility during a specified period. The

merchant owns a power plant that will generate this power. However, there are

two major issues. First, the power plant will require gas that must be obtained

in advance. Supposing the merchant also owns a gas storage facility, he can begin

buying gas early in order to lock in lower prices during the off-season. Second, the

final amount of power demanded LT is stochastic and will only be determined at

maturity. It will depend on a variety of factors, such as weather, market prices,

state of economy, etc. Given the uncertainty of the demand and the flexibility of gas

storage, the task of the supplier is to build up a gas inventory to match the terminal

demand at the lowest total cost. For simplicity, we assume that the conversion of
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gas to power is deterministic so that we can restrict our attention to just the gas

market. Mathematically, the agent therefore needs to hedge the amount LT of gas

by buying, selling and storing gas on [0, T ] with minimum cost.

To solve the problem we need to specify the joint dynamics of gas prices (Gt) and

expected demand load L̃t = E[LT | Ft]. We assume that the demand can be described

by an observed stochastic process (Lt), so that LT is not a separate random variable

but a point on a path of (Lt). One reasonable model is to take the demand to be a

mean-reverting process with a time-dependent level. Hence,

dLt = κL(θL
t − Lt) dt+ σLdW

2
t . (5.7)

The mean-reverting level θL
t can be used to model the seasonal power demand with

higher consumption in the peak seasons. We will continue to assume that the gas

prices (Gt) follow an exponential OU process, cf. (3.4), correlated with (Lt). Let

us also note that under (5.7) the conditional expectation L̃t is a martingale with

exponentially decaying volatility,

dL̃t = σLe−κL(T−t)dW 2
t .

Regarding the penalty for not having the correct inventory of gas at final date T ,

we model it as C̄ ·GT (LT − cT )+. The latter term represents the cost of buying the

remaining gas on the market with a premium C̄ (e.g. C̄ = 1.5), and with no option of

selling the surplus. Defining the value function as J(t, g, c, l, i), Xt = (Gt, It, Lt, ut)

we have a modified gas storage problem given by

J(t, g, c, l, i)
M
= sup

u∈U(t)

E

[

∫ T

t

ψus(s,Gs, Is) ds− C

∫ T

t

|du|s
∣

∣

∣
Xt = (g, c, l, i)

]

, (5.8)

J(T, g, c, l, i) = −C̄ · g · (l − c)+,

and with the regimes ψi as in (5.1).
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Example 5.2. To illustrate the results we re-use the gas storage example 5.1 from

the previous section. We assume that

dLt = 2 · (4 · (0.9 + 0.1 cos(4πt)) − Lt) dt+ σLdW
2
t , d〈W 1,W 2〉t = −0.8 dt,

so that the mean expected load is 4 MMBtu or half the facility capacity of 8 MMBtu.

The negative correlation between W 1 and W 2 indicates that the demand declines

as gas price increases. The fluctuation in the mean level of Lt models the bi-yearly

seasonality of demand. Since the average gas price is three dollars per Btu, without

the storage facility the agent will need to pay about $12 million plus hedging costs.

The agent receives the facility empty, so that with the given injection rate it will

take 96 days to inject four MMBtu. The switching costs are set to be pretty high at

0.25 million dollars.

Table 5.2 summarizes the expected costs as we vary the amount of time available

and the volatility σL of the load. We see that as the amount of time increases, the

cost declines and in fact with a horizon of one year the agent has plenty of time

to engage in speculative storage trading on top of hedging the demand. We also

see that as expected, more volatile load costs more since the agent is unsure till

the very end how much would be needed and hence will try to superhedge to avoid

the penalty of not having enough. Even if the difference of about 0.1 is small, the

relative difference compared to the savings from the storage facility (e.g. about two

million over six months) is financially significant.

5.3 Exhaustible Resources

Besides valuing energy tolling agreements, our model is closely related to manage-

ment of exhaustible resources. In the latter, the firm owns a natural resource, such

as a mine or oilfield that it would like to optimally extract. The resource is subject

to fluctuating price levels and the firm can stop and restart extraction. On infinite

horizon, exhaustible resources have been studied in a classic paper by Brennan and
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Maturity Demand Vol. Demand Vol. Demand Vol.
in Months σL = 0.2 σL = 0.4 σL = 0.8

3 12.17 12.19 12.25
6 9.99 10.01 10.08
9 7.53 7.55 7.64
12 5.23 5.25 5.33

Table 5.2: Price of power supply guarantee in millions of USD for Example 5.2. We
use the LS interpolation scheme with 8000 paths and a grid of 50 inventory values.

Schwartz [13]. However, for realistic financial planning the horizon should be finite.

Indeed, many development licenses have finite lifetimes and the operating company

must extract as much as possible by the deadline. For instance, a mining company

may have only a 20-year lease on the mine site after which it will have to obtain a

new license from the government.

Such resource management is easily convertible into our recursive optimal stop-

ping framework. For simplicity (a standard assumption in the literature), we assume

that the mine can be operated in a discrete number of regimes with production rates

ai. Letting It denote the current level of resources left (hence It is a non-increasing

process), the model becomes a direct analogue of gas storage. Again, It is a degener-

ate state variable that depends on past history and whose dynamics can be directly

extracted from the choice of managerial policy. Given initial (known) total inventory

of c0 the objective is

J(t, x, c, i) = sup
τ,j

E

[

∫ τ

t

ψi(s,Xs) ds+ J(τ,Xτ , Iτ , j) − Ci,j

∣

∣Xt = x, It = c
]

(5.9)

where Iτ = c−ai(τ− t). Resource depletion is modeled with the boundary condition

J(t, x, 0, i) ≡ 0.

Example 5.3. For comparison we take up the example of mine management in [13].

Consider a copper mine with finite inventory of 15 years worth of production. The

mine can be either operated at a fixed rate or kept idle. The price process (Xt)
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follows a geometric Brownian motion and the payoff rates in annualized millions of

dollars (considering taxes and real estate) are



































ψ0(Xt) = −K0,

ψ1(Xt) = q · (Xt −K) − 0.5 · q · (Xt −K)+,

dXt = µXt dt+ σXt dWt,

q = 10, K = 0.5, K0 = 0.5, µ = 0.01, σ2 = 0.08.

Finally, the switching cost is C = 0.2, the discount rate is r = 4% and the mine may

be abandoned, putting a local lower bound of zero on the value of a closed mine.
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Figure 5.2: Comparison of different pricing methods for the copper mine example of

Brennan and Schwartz [13], varying the initial copper priceX0. In [13] only the values

X0 = 0.1·k were reported, while we computed on a finer grid X0 = 0.05·k. The PDE

solver used a 400×300 grid and 10000 time steps. The mixed regression-interpolation

scheme labeled (RMC) used 600 time steps, 10000 paths and 75 gridpoints in the

I-direction.

We solve this problem assuming a finite horizon of 99 years that is standard for

mine exploitation licenses. We use the mixed regression plus I-interpolation scheme

and a FD PDE solver as a double check to make sure we can recover the reference
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values. The PDE solver uses finite differences to solve the QVI which for this problem

is given by [13, p. 343]



















J1
t + 1

2
σ2x2J1

xx + µxJ1
x − qJ1

q + q(x−K) − 0.5 q(x−K)+ − rJ1 = 0,

J0
t + 1

2
σ2x2J0

xx + µxJ0
x −K0 − rJ0 = 0,

J(t, x, q, 0) > 0 and |J1 − J0| 6 C.

The results are compared to those reported by Brennan and Schwartz [13] and

summarized in Figure 5.2. As we see all three solvers are consistent with each other.

Our regression solver has errors of less than 2% everywhere and is an order faster

than the PDE method, already showing significant savings for this toy example.

5.4 Incorporating Other Features

As we have admitted all along, the models presented have been simplifications. Let us

discuss which features one might want to add for a realistic implementation. First of

all, energy prices are observed to be spiky and time-dependent. As mentioned before,

upward jumps can be added easily since the Snell envelope will remain continuous

and thus the value function stays smooth. In principle, smoothness is not necessary,

however the projected conditional expectations will have difficulty approximating

non-smooth functions. Similarly, time-dependent coefficients are straightforward to

incorporate, as long as we have a method for simulating the forward (Xt) paths. In

special cases one can even obtain closed-form results, cf. Section 4.8. Clearly, any

agent wishing to price an (Xt)-derivative should already have handy some scheme

for such simulations. Switching costs and reward rates are also likely to be time-

inhomogenous and Ci,j might depend on the current (Xt). Again, as long as the

barrier is continuous, this does not affect the qualitative properties of the model.

Some problems may have an abandonment feature. For example, in the ex-

haustible resources problem, the mine operator had the option of complete abandon-

ment, shutting down all operations and exiting the business. This provided insurance
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against negative cash flows if the commodity price dropped really low. Besides [13],

an infinite horizon problem with such abandonment option was considered by Zer-

vos [72]. In our framework, the implementation is simple. We can directly impose a

constraint of the form Jk(m∆t, x, i) > Ab(m∆t, x, i) during dynamic programming,

where Ab(t, x, i) represents the total value from abandoning at time t and state (x, i).

In the setting of tolling agreements a crucial feature is outages. Sometimes the

plant experiences a malfunction and must be shut down for maintenance. Outages

are critical in practice and are responsible for many of the electricity price spikes.

They make the operator more risk averse since the benefit of being in an ‘on’ state

is reduced. In general, outages can be broken down into planned and un-planned

ones. The planned outages are usually for routine maintenance and can be seen as

part of the operational characteristics of the plant. Since they are deterministic,

we will ignore them here and concentrate on unplanned emergencies. For simplicity

we assume that the latter are completely unpredictable and occur independently

with a constant intensity rate λ. Letting T̃k represent the random time of the k-th

emergency, we have P[T̃k ≥ s + T̃k−1] = e−λs. Hence, the times between outages

have exponential distribution, and we obtain the same framework as for exponential

maturity randomization, cf. (3.15). The recursive construction (3.7) becomes

Jk(t, x, i) = sup
τ∈St

E

[

∫ τ

t

e−λ(s−t)
(

ψi(s,Xs) + λ(Jk−1(s,Xs, 0) − Ci,0)
)

ds

+ e−λ(τ−t) max
j 6=i

(

Jk−1(τ,Xτ , j) − Ci,j

)
∣

∣

∣
Xt = x

]

,

where the first term represents the probability of an outage and a forced switch to

mode ‘off’ before τ . Numerically, outages are very simple to implement in discrete

time. The benefit of no switch at instant t is simply changed to E
[

(1 − λ∆t)Jk(t+

∆t,Xt+∆t, i) + λ∆t(Jk−1(t + ∆t,Xt+∆t, 0) − Ci,0)| Ft

]

+ ψi(t,Xt)∆t. Related work

has been done by Wang [69].
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Finally, let us mention some features that are not easily implementable in our

framework. First and foremost these include ‘memory’ properties of operating a plant

that destroy the Markov property of (Xt). For instance, in practice the heat rate

is a function of the time the plant has been in operation. The plant is less efficient

when just started and when running for a long time. Similarly, rapid ramping-up

increases the heat rate, meaning that ψi(s,Xs) also depends on the last regime used.

Secondly, in reality the plant operator is not a price taker and hence the chosen

strategy u will in fact influence the price. If this influence has long-term effects our

framework breaks down. We are no longer able to simulate (Xt) by itself, since it

is now affected by the choice of strategy. Lastly, the already mentioned operational

delay features will be hard to implement if we allow the operator to cancel and/or

change her mind during the transition period.

5.5 Utility Maximization

So far our optimization problem has been linear in the sense that we were simply

optimizing the expected profit. In practice, the agent is likely to be risk-averse and

would wish to smooth her realized profits. Here we talk about total realized profits

on the entire horizon [0, T ], which we recall for a given strategy u were labeled as

H(x, i, [0, T ];u). Indeed, the agent should care not only about the expected value

of H(x, i, [0, T ];u) but also about its riskiness. This suggests we impose a global

utility function U to measure the risk-adjusted value of the stochastic cumulative

payoff H(x, i, [0, T ];u). We think of U as penalizing variance, so that the agent is

more risk-averse in her managing policy. She will be willing to forgo some profitable

opportunities when they are highly uncertain in order to smooth out total profit

flows. Moreover, this behavior will be a function of her past realized profit.

Our previous setup consisted in optimization of expected profit under the risk-

neutral measure. Alternatively, we could reinterpret it as optimization under the
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historical measure with a so-called differential or local utility, which can model risk

preferences about the local cash flows. Formally, let P be the historical measure and

take ψi(t,Xt) = Ū(t, φi(t,Xt)) where φi(t,Xt) is the nominal cash flow in regime i and

Ū is a concave utility functional. For instance, we might take φi(t,Xt) = 10(Xt−10)

and Ū(t, x) = e−rt−γx, γ > 0 to model a differential constant relative risk aversion.

The advantage of differential utility was linearity. Indeed, the optimal policy on

[t, T ] was independent of the realized profits on [0, t]. This time additivity made the

optimal policy a function of the current (Xt) only. With global utility U , this is

no longer the case. Let (wu
t ) denote the cumulative wealth process resulting from

using strategy u. This will slightly differ from H(x, i, [0, t];u) since we now allow

investment in a risk-free bank account earning interest r. Hence, the (wu
t ) process

has deterministic dynamics















dwu
t = (rwt + ψut(t,Xt)) dt no switch,

wu
τ = wτ− − C(uτ−, uτ ) switch at τ .

(5.10)

If there are no switches on [t, τ) we obtain

wu
τ =

(

wu
t +

∫ τ

t

e−r(s−t)ψus(s,Xs) ds
)

er(τ−t) = er(τ−t)wu
t +

∫ τ

t

er(τ−s)ψus(s,Xs) ds.

The new control problem can now be stated as















J(t, x, w, i) = sup
u∈U(t)

E

[

U(wu
T )

∣

∣Xt = x,wt = w, ut = i
]

,

J(T, x, w, i) = U(w).

(5.11)

Applying the dynamic programming principle to (5.11) and letting τ denote the first

switching time we obtain

J(t, x, w, i) = sup
τ∈St, j

E
[

J(τ,X t,x
τ , wτ , j)|Xt = x,wt = w, ut = i

]

,

with wτ = er(τ−t)w +

∫ τ

t

er(τ−s)ψi(s,X
t,x
s ) ds− Ci,j.
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Superficially, solving (5.11) is much harder because (wu
t ) is backward-looking, in

particular depending on the history of chosen policy u. However, thanks to the

degenerate dynamics of (wu
t ) we once again can accommodate it numerically in the

same manner we incorporate current inventory levels in the gas storage problem.

Therefore the whole discussion in Section 5.1.1 is applicable.

The special case where there are no switching costs and U(w) = e−γw is called risk

sensitive control and is related to BSDE’s. As shown by El Karoui and Hamadène

[33], the general stochastic control problem

J(0, x0, u0) = sup
u∈U

E

[

exp(−γ
∫ T

0

ψ(s,Xs, us) ds)
∣

∣

∣
X0 = x

]

(5.12)

can be associated with a quadratic BSDE. Namely, J(0, x0, u0;u) = exp(Y u
0 ) where

−dY u
t =

(

Zt
µ(Xt)

σ(Xt)
+ ψ(t,Xt, ut) +

γ2

2
|Zt|2

)

dt− Zt dWt, YT = 0.

Note that ut is now allowed to take a continuum of values. Maximizing J(0, x0, u0;u)

is therefore equivalent to maximizing Y u
0 which in turn can be done by taking the

infimum in the drift term above due to the comparison theorem for BSDE’s. As

a result, one obtains a closed-form expression for the optimal u∗t and a numerical

scheme similar to those discussed in this dissertation could be used to compute

the corresponding Y u∗

0 . It would be interesting to extend this relation further and

incorporate switching costs.

5.6 Risk Management and Hedging

The previous section is a first step towards a systematic method of risk management

in the presence of managerial flexibility. Consider the trading arm of an energy mer-

chant that owns complex portfolios consisting both of standard financial instruments

(European options, futures, etc.) and physical assets with a controllable dispatch

policy. Facing this set of derivatives two main issues arise: how to optimally manage

the assets given the rest of the portfolio? And how to set up hedges for the assets
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using liquid instruments? Both of these fundamental questions hinge on creating a

tractable and consistent method of assigning risk to a general energy portfolio.

To formalize, envision a portfolio of derivatives on an underlying (Xt). We as-

sociate to this portfolio a wealth process w which counts the cumulative cash flows

on [0, T ]. For example, if the portfolio just contains a European option paying out

φ(XT ) and the initial endowment is zero, then wt =
�
{T}(t) · φ(Xt). Abstractly, a

wealth process is any adapted, (R+ × Ω,BR+
⊗ Ft) measurable, square-integrable

stochastic process. Let us stress that w is cumulative, rather than representing raw

cash flows. The financial value of the wealth process w from a standpoint of view

at time t is measured by a utility functional ρ(w). To conform to general notions of

risk we would like that ρ be a convex utility functional as defined by Artzner et al.

[3]. The canonical example is ρ(w) = infQ∈Q E
Q[wT ], and the precise requirements

will be given below.

Suppose now that the agent’s portfolio contains a ‘vanilla’ portion with wealth

process w, as well as a tolling agreement Toll. Then for any fixed strategy u, we

now have an associated value of the entire position given by ρ(w + T ([0, T ];u)),

where T ([0, T ];u) is the corresponding cash flow process from the tolling agreement

on [0, T ]. When we wish to emphasize the initial state, we will write T (x, i, [t, T ];u).

The latter is defined in analogy with the notation for cumulative profit from (2.2),

T (x, i, [0, T ];u)(t, ω) = H(x, i, [0, t];u)(ω). (5.13)

By assumption, the risk preferences ρ have been given to us a priori and the definition

of ‘best’ policy u should take them into account. Accordingly we claim that the

appropriate control problem to solve now is

J(0, x, w, i;w) = sup
u∈U

ρ
(

w + T (x, i, [0, T ];u)
)

given X0 = x,w0 = w. (5.14)

Thus, J(0, x, w, i;w) measures the total value to be extracted from the tolling con-

tract and the portfolio w on the time interval [0, T ] given initial state. The optimal
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switching problem (5.14) also answers the first question we posed—how to value a

general portfolio.

To answer the hedging question we must pass to the dynamic paradigm. Thus,

we must be able to dynamically assign risk-adjusted value to a portfolio at any

intermediate point t. In particular, ρ needs to be replaced by a set of risk measures

ρt. To achieve this we use the ideas of Cheridito et al. [20] on consistent monetary

utility processes. For technical reasons we work in discrete time and with bounded

wealth processes that belong to the space L∞
0,T

M
= {X : sup06m∆t6T |Xm∆t| < ∞}

(resp. L∞
τ,T where τ is a general F∆-stopping time).

Definition 5. [20, Definition 3.1] A Mapping φ : L∞
τ,T → L∞(Fτ ) is called a coherent

concave monetary utility functional (CCMUF) if it has the following five properties:

Measurability: φ(
�

AX) =
�

Aφ(X) for all X ∈ L∞
τ,T and A ∈ Fτ .

Monotonicity: φ(X) 6 φ(Y ) if Xt 6 Yt for all t ∈ [τ, T ] a.s.

Certainty Invariance: φ(X+m · �τ,T ) = φ(X)+m, for all X ∈ L∞
τ,T and m ∈ Fτ .

Concavity: φ(λX + (1 − λ)Y ) > λφ(X) + (1 − λ)φ(Y ) for all X,Y ∈ L∞
τ,T and

λ ∈ Fτ with 0 6 λ 6 1.

Coherence: φ(λX) = λφ(X) for all X ∈ L∞
τ,T and λ > 0, λ ∈ R+.

Definition 6. [20, Definition 4.1 and 4.3] Suppose that for each t = m∆t, φt is a

CCMUF on L∞
t,T . For a F∆-stopping time τ , define φτ by φτ (X) =

∑

m φm∆t(
�

τ=m∆t·

X). The set {φτ}τ∈S∆ is called a monetary utility process. Such a process {φτ} is

called consistent if for any 0 6 t 6 τ 6 T ,

φt(X) = φt

(

X
�

[t,τ) + φτ (X) · �[τ,T ]

)

. (5.15)

The concept of consistency is supposed to indicate that we can recursively mea-

sure the risk-adjusted value of w. Namely, from a starting point t, the total monetary
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value of w is invariant if instead of receiving the random cash flow on [τ, T ], we re-

ceive the future value ρτ (w) with certainty at τ and no payments thereafter. Note

that we allow ρt(w) = ρt(w•) to depend on the whole path of w between the present

time t and final T .

We now extend the concept of monetary utility process to value standard deriva-

tives in the presence of a tolling agreement. Let w be a wealth process corresponding

to a vanilla derivative. Given a tolling agreement Toll and recalling the notation

T ([t, T ];u) from (5.13), the risk-adjusted value of w is defined by

ρ̃t(w)
M
= ess sup

u∈U(t)

ρt

(

w + T ([t, T ];u)
)

− ess sup
u∈U(t)

ρt

(

T ([t, T ];u)
)

. (5.16)

This definition is reminiscent of the indifference price concept. The value of w is the

difference between the utility of the portfolio with w, minus the utility of having just

the tolling agreement. We observe that ρ̃ has a joint effect of diversification and opti-

mization, so that ρ̃ > ρ. Indeed, letting T ∗([τ, T ];w) (resp. T ∗(t,Xt, wt, ut, [t, T ];w))

denote the optimal Toll wealth process in the presence of a fixed revenue stream w,

and using the superadditivity of ρ we have

ρ̃t(w) = ρt(w + T ∗([t, T ];w)) − ρt(T
∗([t, T ]; 0))

> ρt(w + T ∗([t, T ]; 0)) − ρt(T
∗([t, T ]; 0))

>
[

ρt(w) + ρt(T
∗([t, T ]; 0))

]

− ρt(T
∗([t, T ]; 0)) = ρt(w).

We claim that ρ̃ is the canonical construction of assigning value to w, when already

owning Toll. As such, ρ̃ answers the second question we posed by providing a

method for comparing the merits of different wealth processes w with respect to

Toll. Note that the question of using ρ̃ for pricing and the resulting consistency

with no-arbitrage is more subtle and we do not address it here. For us ρ̃ is just a

method of comparing hedging opportunities that in addition preserves all the ‘good’

properties of ρ. It is immediate to verify that each ρ̃t is a CCMUF. Moreover, as the
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next theorem demonstrates, ρ̃ inherits the time-consistency of ρ. Intuitively, this is

due to Bellman’s principle that makes optimization consistent in time.

Theorem 9. Suppose that ρ is a consistent risk measure. Then ρ̃ is consistent.

Proof. We need to verify that (5.15) holds for ρ̃. We begin by computing

ρ̃τ (w) = ess sup
u∈U(τ)

ρτ (w
�

[τ,T ] + T (τ,Xτ , uτ , [τ, T ];u)) − ess sup
u∈U(τ)

ρτ (T (τ,Xτ , uτ , [τ, T ];u))

= ρτ (T
∗([τ, T ];w

�
[τ,T ])) − ρτ (T

∗([τ, T ]; 0)). (5.17)

Next we observe that by the dynamic programming principle, the additivity of cu-

mulative profits, and consistency of ρ,

ess sup
u∈U(t,T )

ρt(T (t, x, i, [t, T ];u)) = ess sup
u∈U(t,τ), v∈U(τ,T )

ρt

(

T (t, x, i, [t, τ ];u)
�

[t,τ) (5.18)

+
[

T (τ,Xτ , uτ , [τ, T ]; v) +H(x, i, [t, τ ];u)
]�

[τ,T ]

)

= ess sup
u∈U(t,τ)

ρt

(

T (t, x, i, [t, τ ];u)
�

[t,τ) (5.19)

+ ess sup
v∈U(τ,T )

ρτ

(

T (τ,Xτ , uτ , [τ, T ]; v) +H(x, i, [t, τ ];u)
)�

[τ,T ]

)

.

The last expression shows that we can split the optimization step into recursive

optimization over [τ, T ] and then over [t, τ). We are now ready to compute

ρ̃t

(

w
�

[t,τ) + ρ̃τ (w)
�

[τ,T ]

)

=

ess sup
u∈U(t,T )

ρt

(

w
�

[t,τ) + ρ̃τ (w)
�

[τ,T ] + T ([t, T ];u)
)

− ρt

(

T ∗([t, T ]; 0)
)

.
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It remains to manipulate RHS1, the first term on the right hand side:

RHS1 = ess sup
u∈U(t,τ)

ρt

(

w
�

[t,τ) + T ([t, τ ];u)
�

[t,τ)

+
[

ess sup
v∈U(τ,T )

ρτ

(

T (τ,Xτ , uτ , [τ, T ]; v) +H(x, i, [t, τ ];u) + ρ̃τ (w)
�

[τ,T ]

)]�
[τ,T ]

)

= ess sup
u∈U(t,τ)

ρt

(

[w + T ([t, τ ];u)]
�

[t,τ)+
[

ρτ (T
∗([τ, T ]; 0)) +H(x, i, [t, τ ];u)

+
{

ρτ (T
∗([τ, T ];w

�
[τ,T ])) − ρτ (T

∗([τ, T ]; 0))
}

]�
[τ,T ]

)

= ess sup
u∈U(t,τ)

ρt

(

[w + T ([t, τ ];u)]
�

[t,τ)+ ρτ

(

T ∗([τ, T ];w
�

[τ,T ]) +H(x, i, [t, τ ];u)
)�

[τ,T ]

)

= ess sup
u∈U(t,T )

ρt(w + T ([t, T ];u)).

The first line above applies (5.18), the second line uses (5.19) and (5.17), which due

to the shift invariance of ρτ leads to terms cancelling each other on the third line,

and the last line finally applies (5.19) in reverse. Summarizing,

ρ̃t

(

w
�

[t,τ) + ρ̃τ (w)
�

[τ,T ]

)

= ρt(T
∗([t, T ];w)) − ρt(T

∗([t, T ]; 0)) = ρ̃t(w),

which is precisely the consistency condition.

The framework can now be used to analyze static hedging by the agent. A

European option paying out φ(XT ) and costing p at time t is worthwhile to purchase

given initial holdings w as long as,

ess sup
u∈U(t)

ρt

(

φ(XT ) · �t=T + w + T ([t, T ];u) − p
)

> ess sup
u∈U(t)

ρt

(

w + T ([t, T ];u)
)

,

or simply ρ̃t

(

φ(XT ) · �t=T + w
)

> ρ̃t(w) + p.

Other claims of American, Asian, etc. type can be similarly considered. We can

analyze more complicated cases as well, for instance where the derivative φ is written

on a different asset (X1 t) than the underlying in the toll (X2 t). This is the incomplete

markets situation one encounters in practice when the Toll underlying (X2 t) are

local power and gas prices (e.g. Chicago city gate), while the financial derivatives
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will be written on the liquidly traded NYMEX contracts. From the point of view of

optimization, there is no difficulty in extending the model to Xt = (X1 t, X2 t), and

ρ̃ then allows us to price together traded options and the illiquid over-the-counter

tolling agreements. In this sense our method is a stochastic control analogue of the

framework in McCardle and Smith [58], who constructed a general static paradigm

for valuing tradeable and non-tradeable assets. Finally, dynamic hedging should be

possible once one appropriately defines continuous-time monetary utility functionals.

On a computational level, tractability depends on the structure of the risk mea-

sure ρ. For example, the simplest choice ρt(w) = E[wT | Ft] corresponds to the linear

profit maximization model that we started with in this thesis, and the consistency

of ρ reduces to the trivial tower property of conditional expectations. A more in-

teresting case is ρt(w) = ess infτ∈St E[wτ | Ft] corresponding to the worst-stopping

case. Because of the evident relationship between ρ and Snell envelopes our numer-

ical scheme can also be adapted to this situation. We leave further research in this

direction to future work.

5.7 Conclusion and Future Research

This dissertation investigated the numerical solution of optimal switching problems

that arise in energy markets. Our scheme is based on converting the problem into

recursive optimal stopping and then computing the Snell envelopes by backward

recursion. We proposed a new scheme based on Monte Carlo regressions that are

run simultaneously for all the optimal stopping problems. While our convergence

analysis is incomplete, we hope that the breadth of examples listed is compelling as

to the merit of this approach. We believe that when it comes to practical implemen-

tation our method is more robust and versatile than any that appeared so far in the

academic literature. Moreover, it is superior to the currently practiced approach of

spread option strips that ignores the operational constraints of tolling agreements.
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As the last chapter has demonstrated, the techniques described are applicable

to many other energy-related problems. In particular, the gas storage and power

supply guarantees are important practical challenges on which our method can shed

new light. Full analysis of these two settings will appear in our forthcoming paper

[56]. Before concluding, let us mention a couple more possible avenues of investi-

gation. Partially observed models is a common feature of real-life applications. In

the simplest setting (Xt) has unobserved components that affect the dynamics but

not the profit. An example is the class of convenience yield models that have been

popular for energy modeling [16]. In general, stochastic control with partial observa-

tions is very challenging numerically since the full state space is infinite dimensional.

However several simplifications seem to present themselves. First, if the model is

Gaussian, a Kalman filter can be applied, so that the distribution of the unobserved

factor is fully described by its conditional mean and variance. Hence, the effective

dimension of the problem is just d + 2. Then the regression scheme can be applied

in the larger dimension after one simulates the observed part (X1 t) and filters the

unobserved (X2 t). In the more general case, one could attempt to use particle filters

[55]. This means approximating the conditional distribution of X2 t by a cloud of N f

particles. The effective dimension is reduced to d + N f , but this is still intractable

for computing conditional expectations. However, one could attempt to find sum-

mary statistics to roughly describe the distribution of the particles. This dimension

reduction idea relates back to Barraquand and Martineau [7] who wrote the origi-

nal paper on solving high-dimensional optimal stopping problems by simulation. It

seems that the same approach should work for optimal switching with partial ob-

servations. For example, one could parametrize via the moments of the empirical

particle distribution.

Stochastic games is another interesting application. Instead of having a single

controller, consider the situation where there are two players with competing inter-
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ests. As long as simultaneous switches are not allowed and there is a clear rule on the

precedence of switching decisions, the problem should fall into the realm of optimal

switching we have analyzed here. In general, stochastic games are naturally related

to doubly-reflected BSDE’s, see e.g. [36]. Possible finance applications might include

exotic convertible bonds, compound game options and competition games between

firms.

Returning to optimal switching itself, several open problems remain that we

would like to settle. A better grip on the regression and Monte Carlo error propaga-

tion is needed to understand the convergence properties of the LS scheme. Also, it

would be very useful to have tractable conditions regarding existence of connected

switching sets, extending Theorem 5. The method of excessive majorants should

be further investigated as it might provide new closed form solutions (or at least

recursive formulae) for the value functions. On a more fundamental level, deeper

understanding of the connection between quasi-variational inequalities and reflected

BSDE’s that we briefly touched upon in Section 3.7 has the potential to provide new

probabilistic tools for numerically solving the classical Stefan problem.
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