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Abstract. We study a dynamic insurance market with asymmetric information and ex

post moral hazard. In our model, the insurance buyer’s risk type is unknown to the insurer;

moreover, the buyer has the option of not reporting losses. The insurer sets premia according

to the buyer’s risk rating that is computed via Bayesian estimation based on buyer’s history

of reported claims. Accordingly, the buyer has strategic incentive to withhold information

about his losses. We construct an insurance market information equilibrium model and show

that a variety of reporting strategies are possible. The results are illustrated with explicit

computations in a two-period risk-neutral case study.

Date: May 20, 2008.
Key words and phrases. Keywords: moral hazard, Bayesian learning, reporting strategies, experience

rating, multi-period insurance.
1



EX POST MORAL HAZARD AND BAYESIAN LEARNING IN INSURANCE 2

1. Introduction

Buyers of casualty and property insurance possess varying levels of risk. Risk type is used

by the insurer to set premia and is the main parameter in pricing the resulting insurance con-

tract. Unfortunately, the intrinsic riskiness of the buyer is typically unknown from the point

of view of the insurer. This leads ex ante to problems of moral hazard and adverse selection.

Namely, higher-risk buyers will attempt to enter into contracts designed for low-risk buyers,

and once they obtain insurance, all buyers have little incentive to act prudently. However,

many insurance contracts (notably automobile insurance) have a recurring nature. Thus, the

issue of information asymmetry is partially mitigated by implementing an experience-rating

or bonus-malus system (see Lemaire (1995) for a comprehensive review of such insurance

schemes), through which the insurer gives incentives to the buyer to act in the “best” be-

havior. Through such incentives, a self-serving buyer may reveal his1 risk type or exercise

an optimal amount of preventive efforts.

A second level of ex post information asymmetry arises in connection with reporting losses.

After an insurable event occurs, the buyer has the option of not reporting the loss in the

hopes of signaling that he is of a lower-risk type and, hence, deserves a lower future premium.

If the gain from lowering his perceived riskiness (and the corresponding future premia)

outweighs the cost for settling the loss out-of-pocket, the buyer will not report the loss. This

might happen, for instance, if the risk loading on the insurance is high enough and leads

to ex post moral hazard. The presence of this non-reporting option has serious implications

since it dramatically alters the information received by the insurer. Instead of acting to

reveal his risk type, the buyer strategically manipulates reports. In response, the insurer

now needs a learning mechanism to infer the risk type of the buyer based on submitted

claims. Moreover, a rational insurer recognizes that non-reporting might occur and sets

the experience-rating update and premium to account for the optimal reporting strategy

of the buyer. The converse of non-reporting is insurance fraud whereby the buyer may

manufacture false claims. The information asymmetry of insurance fraud is usually resolved

by claim verification and monitoring; by contrast, verifying non-reported losses is usually

impractical or against the law.

There is anecdotal empirical evidence for such strategic behavior by both buyers and in-

surers, especially in the private passenger automobile and homeowner’s insurance industries.

For instance, after minor car accidents of the “fender-bender” type, it is commonplace that

insurance agents advise their clients to pay for repairs themselves and not file a claim, so

as to maintain their high “rating.” Conversely, it is often observed that the actual malus

1We make the standing assumption that the insurer is a she and the buyer is a he.



EX POST MORAL HAZARD AND BAYESIAN LEARNING IN INSURANCE 3

penalties for reporting auto claims are relatively severe and would be excessive in a world

with perfect reporting (that is, they compensate for the fact that only major accidents are

reported).

In this paper, we study the implications of this double information-asymmetry insurance

problem in a multi-period model with the insurer learning through Bayesian updating. To

focus on the ex post moral hazard aspect of the problem, we rule out adverse selection by

postulating mandatory insurance (no opt-out clause) and avoid ex ante moral hazard by

making the claim probabilities completely exogeneous. Mandatory insurance also allows

us to sidestep the issue of participation constraint as all buyers are required to nominally

subscribe to the insurance market, even if they will then choose to partially self-insure.

Instead, we focus on determining the optimal reporting strategies of the buyers of insurance,

while assuming that insurers apply the classical Bayesian learning rule to update the premia.

Analysis of games with incomplete information dates back to the pioneering work of

Harsanyi (1967, 1968a,b) on Bayesian game theory. In the context of insurance with asym-

metric information, recall the seminal paper of Rothschild and Stiglitz (1976) who consider

an insurance model with exogenous accident probabilities, constant claim sizes, and publicly

known risk preferences of the buyer. In this context, in a one-period model, Rothschild and

Stiglitz (1976) find a separating equilibrium in which the insurance contract is designed to

reveal information, with higher risks buying full coverage at their actuarially fair premium

and lower risks buying partial coverage at their actuarially fair premium. Rothschild and

Stiglitz (1976) focus on adverse selection, so that the only choice of the buyer is to select

among a group of possible insurance contracts.

An extensive literature (Dionne 2002) has also considered moral hazard, whereupon the

buyer controls some variable related to his insurance losses, in contrast to adverse selection

where the unknown in the model is the static risk parameter. In a typical example, the

buyer can exert (unobservable) effort that lowers his accident probability; the aim is, then,

to design an insurance contract that forces the buyer to exert a first-best effort level even

under the information asymmetry.

The extension of the model of Rothschild and Stiglitz (1976) to multiple periods has been

considered in Townsend (1982), Dionne (1983), Dionne and Lasserre (1985), and Cooper and

Hayes (1987). The presence of multiple periods leads to questions of contract commitment

and renegotiation. With ex post moral hazard, a typical buyer cannot commit to more

than one period since his reports are intrinsically non-verifiable. Accordingly, with multiple

periods, one can focus either on contracts that vary coverage (looking for separating equilibria

via the insurer offering a menu of contracts) or on contracts that vary premia. Varying the

premia corresponds to an experience rating or bonus-malus mechanism (Hey 1985, Dionne



EX POST MORAL HAZARD AND BAYESIAN LEARNING IN INSURANCE 4

and Vanasse 1992) which is often employed in ratemaking for automobile insurance. The

bonus-malus system penalizes occurence of claims thereby providing incentives for prudent

behavior.

The second aspect of an experience rating system consists of the insurer attempting to

learn the type of the buyer over time. The classical example of Bayesian learning has been

explicitly considered by Hosios and Peters (1989) and Watt and Vasquez (1997). Hosios and

Peters (1989) consider the Rothschild and Stiglitz (1976) framework with varying coverage.

In their model, low risks always act myopically, report all claims, and purchase the one-

period contract; high risks will choose a randomized reporting strategy. This setup leads to

a stochastic game between the monopoly insurer who offers varying coverage and the high

risk buyer who strategically reports claims. In contrast to our work, the model of Hosios

and Peters (1989) does not require studying the joint interaction of heterogeneous buyers

and, hence, an equilibrium strategy always exists. From a different point of view, Watt and

Vasquez (1997) show that with multiple periods, a Bayesian bonus-malus contract dominates

the multi-period extension of Rothschild and Stiglitz (1976); therefore, the former is a more

plausible contract structure (in other words, it is beneficial to vary premia rather than

coverage). However, Watt and Vasquez (1997) assume that no underreporting is possible

and, thus, treat only the case of adverse selection.

Our work is most allied with a recent paper by Robinson and Zheng (2006) who consider

the effect of experience-rating on precautionary behavior by insurance buyers. Robinson and

Zheng (2006) study a two-period model with compulsory insurance and high- and low-risk

types, where the buyer faces both ex ante moral hazard (through an unobservable effort

variable) and ex post moral hazard (through a possibility of not reporting a claim). In

addition, Robinson and Zheng (2006) also assume that the buyers do not know their own

type; moreover, the experience rating is solely based on the occurrence of a claim during

period one (thus, there is no “prior” risk type). The authors show that even if the effort is

unobservable by the insurer, the buyer will engage in precaution in order to maintain a good

rating and avoid future costs, mitigating ex ante moral hazard, while creating ex post moral

hazard.

Starting with the same framework, we choose instead to focus solely on ex post moral

hazard. Accordingly, we drop the option of the buyer to influence accidence probabilities

and make the latter completely exogenous. Moreover, in contrast to Robinson and Zheng

(2006), we assume that the buyers are aware of their risk type and, therefore, strategically

manipulate their reporting. In order to focus on underreporting, we rule out the other

mentioned type of ex post moral hazard, namely insurance fraud; see Moreno et al. (2006)

for a study of effect of a bonus-malus contracts on fraud. As in Hosios and Peters (1989),
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we assume that the insurer uses a Bayesian experience rating that depends both on the

latest claim report and on the prior of the buyer’s risk type. Thus, the insurer has initial

ratings assigned to each buyer, which are public knowledge, and the buyer can manipulate

his experience rating by reporting or not reporting losses, modeled as a mixed game strategy

(in contrast to only pure strategies considered in Robinson and Zheng (2006)). The explicit

model of the learning mechanism of the insurer allows us to compute the optimal reporting

strategies in closed-form.

In our setting, existence of equilibrium is non-trivial since it requires a compatability

between the optimal behavior for buyers of all possible risk types (in terms of resulting ran-

domized reporting strategies) and the global experience-rating mechanism employed by the

insurer across all (unknown to her) risk types of buyers and their strategies. One of the

main contributions of our model is showing that this compatability is non-trivial and can

sometimes fail. Hence it is possible that for some buyers the insurer has no consistent mech-

anism to update premia and ratings. Moreover, the model features abrupt phase transitions

between different reporting strategies as a function of perceived buyer risk.

Finally, we mention some recent empirical literature that attempts to test the significance

of various information asymmetries in actual insurance markets around the world. Of partic-

ular note are the recent studies of Abbring et al. (2003), Chiappori et al. (2006) and Abbring

et al. (2007) who consider the automobile insurance markets in France and the Netherlands,

respectively. The Netherlands system, in particular, incorporates a complicated bonus-malus

class structure that can be viewed as a proxy for a Bayesian updating mechanism. The cited

papers find conflicting evidence of ex ante and ex post moral hazard and discuss the econo-

metric difficulties of disentangling the multiple information asymmetries. We point out that

in those studies, a key emphasis is made on the claim severity, a feature that is absent in

our model where all claims are of unit size.

The structure of this paper is as follows. In Section 2, we describe the multi-period

insurance game that we study; then, in Section 3, we present the mathematical details of

our model. In Sections 4 and 5, we study a two-period example in detail and show that an

equilibrium might not exist even in this simple case. We also study the types of equilibria

that can occur and show that in the first period of the two-period example, low risks either

always report or never report their losses, while high risks report their losses with a positive

probability. In other words, high risks might try to make themselves look more like low risks

by hiding some of their losses, but they never completely mimic low risks by never reporting

their losses. In Section 6, we discuss how the equilibria found in the two-period model might

change in a more general setting, for example, under a non-linear premium rule or with more

than two periods. Section 7 concludes the paper.



EX POST MORAL HAZARD AND BAYESIAN LEARNING IN INSURANCE 6

2. Insurance Market with ex post Moral Hazard

In this section, we provide an economic description of the dynamic insurance market

model we consider. The precise mathematical construction is then presented in Section 3.

Our notation follows Rothschild and Stiglitz (1976) and Hosios and Peters (1989).

2.1. Information Asymmetries. To focus on the stated information asymmetry, we as-

sume that the buyer has no control over his own risk type (that is, no ex ante moral hazard).

Moreover, the buyer acts rationally in that he chooses a reporting strategy to minimize his

total expected costs over a given finite time period. For simplicity, all losses are of fixed size

1, so that the issue of partial reporting is non-existent. We also assume that the buyer can

hide losses but cannot manufacture them, nor can the insurer discover losses that are not

reported. In other words, a reported claim is verifiable; a non-reported one is not.

The main level of information asymmetry is that the buyer is aware of his risk type X ∈ E;

in contrast, the insurer never knows X precisely (unless the buyer by his actions reveals X)

but starts with a prior distribution q(0) at time 0 over possible values of X. Thus, from the

insurer’s point of view, X is a random variable, whose distribution is updated in response

to incoming insurance information. Buyers differ only in their probability of a loss; a buyer

of risk type X = x has probability of loss equal to px.

Since the buyer knows his type (that is, his probability of loss), he can strategically

manipulate the insurer’s beliefs in the manner most advantageous to him. We denote by

q(k) the insurer’s beliefs at time k, with the space of values of q(k) denoted by

D = {(q1, q2, . . . , qd) ∈ Rd :
∑
x∈X

qx = 1, 0 ≤ qx ≤ 1}, d = |E|.

Here, qx is the probability that a risk type is of type x ∈ X according to the beliefs of the

insurer. We write qx(k) if we want to emphasize that the belief is held at time k, that is,

at the beginning of period (k + 1). We assume that at time zero, the buyer knows his own

initial rating q(0).

For a given rating q = q(k − 1) at the beginning of period k, denote by dX(q, k) the

probability that a realized loss will be reported to the insurer at the end of period k, that is,

at time k. Therefore, from the insurer’s point of view, the probability that a claim is filed

at time k equals
∑

x∈E qx(k − 1) px dx(q, k).

2.2. Insurance Market. The insurance market operates as follows. The description be-

low is based on a given fixed collective reporting strategy (across all risk types x), ~d ≡
{~d(q, k)} = (dx(q, k))x∈E, for q ∈ D and k ∈ {1, . . . , T}, and a fixed insurer ratemaking pol-

icy. Since verifying non-reported claims is impossible, the buyer cannot credibly commit to a
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multiple-period contract. Consequently, we only consider one-period contracts with the dif-

ferent periods linked by reputational considerations (insurer beliefs). The insurance contract

consists of an update mechanism G that implements the experience-learning scheme and a

(contingent) premium schedule f(q(k − 1), ~d(·, k)) for the kth period that determines the

premium payable at time k− 1 based on the current rating and the heterogeneous reporting

strategy that will be implemented at time k. The insurer anticipates partial non-reporting

and will lower upcoming premia to reflect lower insurance costs, thus making “lying” more

profitable for the buyer.

At the beginning of each period k = 1, 2, . . . , T , the premium f(q(k− 1), ~d(q(k− 1), k)) is

first collected. Second, the buyer either does or does not experience an insurance event (recall

that all losses are of size 1). The occurrence of a loss is modeled as an independent Bernoulli

trial with probability pX of occurring, the probability being a function of the true risk type

X. If a loss occurs during period k, then the buyer has the option of (a) reporting the

‘claim’ and receiving reimbursement at time k, or (b) settling the loss himself and reporting

‘no claim’ at time k. If no loss occurs, the buyer reports ‘no claim.’ From the insurer’s point

of view, the latter outcome is identical to case (b) above. The reporting strategy of the

buyer is represented by a randomization policy with parameter dX(q(k − 1), k): conditional

on the type X of the buyer and an event occurring in the kth period, the buyer performs an

independent Bernoulli trial (hidden from the insurer), and with probability dX(q(k − 1), k)

reports the event (case (a)) to the insurer at time k. Thus, with probability 1−dX(q(k−1), k)

the event is not reported and case (b) takes place.

Let Yk ∈ {0, 1} represent the indicator of a reported claim at the end of the kth period

(time k) and denote by Fk = σ{Ys : s = 1, 2, . . . , k} the claim information received by

the insurer by the end of period k. For typographical convenience, we will write ~d(k) for

~d(·, k). Based on the buyer’s announcement of ‘claim’ or ‘no claim’ (as well as the collective

reporting strategy ~d(k)) the insurer now updates the buyer’s rating using a Markovian update

mechanism G(q(k − 1), Yk; ~d(k)). More directly, we will write q+(q(k − 1), ~d(k)) = G(q(k −
1), 1; ~d(k)) and q−(q(k − 1), ~d(k)) = G(q(k − 1), 0; ~d(k)) to indicate the updated ratings in

the event of a ‘claim’ (‘no-claim’) report. We reiterate that premia are paid at the beginning

of each period and claims are settled at the end; thus at time k (the end of the kth period),

the premium f(q(k), ~d(q(k), k + 1)) for period (k + 1) and any losses for period k (either

self-absorbed or reimbursed by the insurer) are settled simultaneously.

After all these adjustments, the market moves to the next round. After the last round,

the T th, the game stops (that is, no more insurance is issued). The overall mechanism is

illustrated in Figure 1.
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Given: type X ∈ E

and initial rating q(0)

Pay current premium

f(q(k − 1), ~d(q(k − 1), k))

Generate event for period k

Lk =

 1 with prob pX

0 with prob 1− pX

if Lk = 0

if Lk = 1

Report no-Claim

Yk = 0

q(k) = q−(q(k − 1), ~d(k))

UpdateUpdate

q(k) = q+(q(k − 1), ~d(k))

Pay $1

out-of-pocket

Report Claim

Yk = 1

if Yk = 1
if Yk = 0

Generate reporting outcome

Yk =

 1 with prob dX(k)

0 with prob 1− dX(k)

Move to next period k ← k + 1

Initialize k = 1

Figure 1. Flow chart illustrating the insurance market.

2.3. Insurance Market Equilibrium. In order to create an equilibrium, two items are

now necessary:

(1) The seller must ex ante commit to a verifiable and public update mechanism G

regarding ratings.

(2) The buyers must be able to collectively “announce” their entire reporting strategy

(~d(·, k)k=1,...,T ) at time 0, such that it is credible. That is, for any buyer of type

X = x, the reporting frequency dx(·, k) is optimal at period k assuming all other

buyers implement ~d. In other words, deviation from the collective ~d must be sub-

optimal for any given buyer.

Our first assumption is easily enforced on the grounds that an insurer is regulated and,

hence, faces mandatory rules regarding ratings. Alternatively, there is a competitive insur-

ance market with public ratings that weeds out any unreliable insurers. This situation is

generally true in practice where experience rating systems are publicly announced and al-

ways honored for settling claims. They also tend to be “sticky” over time, so that changes

to the update mechanism are made rarely.

The requirement of collective compatability is clearly necessary to prevent deviations from

buyers (as verifying their reporting strategy is obviously impossible). The aspect of the
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buyers collectively “announcing” their reporting strategy is to resolve an issue of potentially

several co-existent equilibria. The insurer must know the prevailing equilibrium; otherwise,

she does not have a consistent way of updating her beliefs as she does not know the precise

information set with which she is working. As we will show below, in some cases it is possible

to prove that at most one equilibrium exists and, therefore, no public announcement is

necessary by a rational buyer. With a unique equilibrium, the insurer can directly infer the

only collectively compatible strategy ~d∗.

Because premia are mandatory and paid at the beginning of each period, the reporting

strategy is required to be ex post optimal. Thus, even though the period-k premium f(q(k−
1), ~d(k)) is affected by the reporting strategy ~d(k) employed at time k, from the point of

view of the buyer who effectively makes his reporting decision at time k, this premium is

a sunk cost. Indeed, at the beginning of a period, the buyer may commit to a reporting

strategy at the end of that period only if it is ex post optimal once premium is paid. This

fact is most starkly manifested during the last period. At time T − 1, a rational buyer

may be better off self-insuring and, therefore, could claim that his premium should be zero.

However, insurance is mandatory, so once premium is paid, the buyer clearly has no incentive

to self-insure at time T and will report all claims. Hence, in the last period the only ex post

optimal strategy is full reporting.

One key feature of our model postulates that the updating of the buyer’s rating is based

on a Bayesian mechanism (Hosios and Peters 1989, Watt and Vasquez 1997); that is, given

beliefs q(k−1) in the beginning of the kth period, the announced reporting strategy ~d(k) for

period k, and the the actual report Yk at time k, the new insurer beliefs q(k) are computed

using a relative-likelihood approach based on conditional probabilities of respective events.

Namely, q(k) , Pq(k−1)(X|Yk, ~d(k)). Thanks to this non-linear mechanism and to the second

level of information asymmetry that gives the buyer control over this updating (via the

reporting strategy), the resulting insurance market exhibits a rich and interesting structure.

Other update mechanisms are also possible (for example, a non-Markovian mechanism, a

moving-average mechanism such as q(k) = βq(k − 1) + (1− β)Yk, etc.).

We choose classical Bayesian updating because (a) the resulting q(k) is the vector of

conditional probabilities for the buyer type given the reporting strategy ~d; and (b) q(k) is

non-linear in the prior rating q(k − 1), which results in non-trivial reporting strategies even

under linear preferences, as we show later. Property (a) justifies Bayesian updating from

the point of view of learning; it is well known that conditional probabilities minimize the

square-error loss, so that an insurer that wishes to best estimate the buyer’s risk type will

use this method (see Mikosch (2004) for references). Features of Bayesian updating can be

detected in some of real-world experience rating systems. For instance, in the Netherlands
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car insurance market, Abbring et al. (2007) report that the updates are more dramatic for

middle rating classes than for the extreme classes, as is also obtained in a Bayesian setting.

Remark 1. We argue that a straight bonus-malus system is not consistent with our asym-

metric information model. Indeed, because the update in bonus-malus only depends on the

previous experience rating and the latest claim information, it fails to take into account the

different strategic behaviors of heterogeneous buyers. A bonus-malus model assumes that

the reporting strategy of a particular buyer is independent of the strategies of the other

buyers; thus, it ignores the fact that the observed probability of claims is a function of the

reporting strategies across buyers. In other words, a consistent update mechanism G must

be a function of all dx(k), x ∈ E, since it should weigh the latest claim observation by its

relative likelihood for each buyer type.

2.4. Markov Strategies. In general, the reporting strategy ~d(k) may be a function of all

the past information (in particular, the report history), rather than just a function of the

latest rating q(k − 1). Our Markovian assumption can be justified by assuming that the

report history is not public knowledge (with verification costly or impossible), so that the

only credible strategy announcements for reports in the kth period must be based on current

rating q(k− 1), which is public knowledge. This parallels the real-life setting of confidential

credit histories that are summarized with a single public credit score for any commercial

credit enquiry.

Also, the premium rule f may also be a function of the report history, that is, a minimal

requirement is that the premium paid at time k be Fk-adapted. Again, such a possibility can

be ruled out that if there is a competitive insurance market with different insurers present

at each period. If the report histories are not public knowledge, premia must be based only

on the latest rating and implicitly on the anticipated reporting strategy. For example, in

private passenger automobile insurance in the United States, insurers and other economic

agents rely on a demerit or points system, which is a proxy for risk rating.

3. Probabilistic Model

In this section, we provide the mathematical details of our model.

3.1. Bayesian Learning. For simplicity, we consider the two-state case, whence X ∈ E ,

{L, H} so that risks are either of low or high type. Let 0 < pL < pH ≤ 12 be the time-

homogeneous probabilities of an insurance event for the respective risk types.

2If pL = pH then the two risk types are the same, thereby making the problem degenerate.
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With a slight abuse of notation relative to the previous section, in this section and the next,

let q(k) ≡ qH(k) = P(X = H|Fk) be the belief of the insurer concerning whether the buyer

is of high type based on the information available at time k. If the time k is irrelevant or

understood, then we also write q for q(k). Also, let (dL(k), dH(k)) be the reporting strategy

of the buyers in the kth period conditional on q(k − 1). Recall that Yk ∈ {0, 1} indicates

whether a loss is reported at time k. Then, the probability of a reported claim at time k

equals

P(Yk = 1) = pH · dH(k) · q(k − 1) + pL · dL(k) · (1− q(k − 1));

therefore, by Bayes’ formula the updated beliefs at the end of the kth period q+(k) and q−(k)

conditional on whether a claim was reported are G(q, dL(k), dH(k)) =
q+(dL, dH) , Pq(X = H|Yk = 1) =

pH · dH · q
pH · dH · q + pL · dL · (1− q)

,

q−(dL, dH) , Pq(X = H|Yk = 0) =
(1− pH · dH) · q

(1− pH · dH) · q + (1− pL · dL) · (1− q)
.

(1)

Again, we stress that the update mechanism, G : (q, dL, dH) ∈ D × [0, 1]2 → (q−, q+) ∈ D2,

depends on the announced strategy (dL(k), dH(k)) since it is based on the relative likelihood

of the corresponding risk types filing a claim. The Bayesian update G in (1) is non-linear

and asymmetric in the low- and high-risk type parameters. Also, note that if dL = 0 (resp.

dH = 0), then a claim is a clear signal that the buyer is of high type, q+ = 1 (resp. low type,

q+ = 0); this is the only situation in which the buyer anambiguously reveals his type.

3.2. Objective of the Buyer. Let T be the finite horizon of the insurance game, and let

v ≤ 1 be the discount factor for future payments. We assume that the buyer possesses time-

additive risk-averse (or risk-neutral) preferences with respect to insurance costs. Let U be

the convex loss function of the buyer, with U(0) = 0. Let Lk ∈ {0, 1} be the actual realized

loss in period k (as opposed to Yk reported to the insurer; note that Yk ≤ Lk). Then, at

time k (end of the kth period), conditional on his true risk type X, the buyer’s risk-adjusted

costs are:

Ck =


U

(
f(q+(k), ~d(q+(k), k + 1))

)
with prob. pXdX(k),

U
(
1 + f(q−(k), ~d(q−(k), k + 1)

)
with prob. pX(1− dX(k)),

U
(
f(q−(k), ~d(q−(k), k + 1)

)
with prob. 1− pX .

(2)

As argued before, since the market terminates at time T , it is ex post optimal to report

all the period-T losses; thus, we assume henceforth that LT = YT , which implies that the

time-T costs are U(0) = 0. Recall that the buyer selects his reporting policy just before the
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end of the k-period, at time k−. The losses are then settled at time k, and immediately

the rating is updated to q(k). Thus, for a given reporting strategy ~d, at time k− the total

discounted expected costs from time k through time T for a buyer of type X are

VX(k, q(k − 1))(~d) ,
T−1∑
n=k

vn−kEq(k−1)
[
U

(
Ln − Yn + f(q(n), ~d(q(n), n + 1)

)]
,(3)

with the premium at time T understood to be 0. Note that the premium for period k,

namely f(q(k− 1), ~d(q(k− 1), k)), is not part of V (k, q(k− 1)) since by time k− it is a sunk

cost and does not enter into the optimization problem that we introduce below.

By using the time-additivity of utility, (3) can be recursively written as VX(T, q) = 0 and

VX(k, q(k − 1))(~d) = pX

[
dX(k)

(
U(f(q+(k), ~d(q+(k), k + 1))) + vVX(k + 1, q+(k))(~d)

)(4)

+ (1− dX(k))
(
U(1 + f(q−(k), ~d(q−(k), k + 1))) + vVX(k + 1, q−(k))(~d)

)]
+ (1− pX)

[
U(f(q−(k), ~d(q+(k), k + 1))) + vVX(k + 1, q−(k))(~d)

]
.

The first term represents the value in the case of a report, the second term represents

the cost of the self-imposed loss that occurs when an event is not reported, and the last

term represents the expected value in the case of no-loss. The values (q−(k), q+(k)) =

G(q(k − 1), dL(k), dH(k)) are obtained from (1).

A rational buyer chooses his reporting strategy to minimize expected future costs. How-

ever, if the buyer is of type X, his control is just {dX(q, k)}k=1,...,T , while VX depends on the

entire collective ~d. Thus, a consistency condition is needed, namely that
d∗L(q, k) ∈ arg min

dL

VL(k, q)(dL, d∗H(k), ~d∗(k + 1), . . . , ~d∗(T )),

d∗H(q, k) ∈ arg min
dH

VH(k, q)(d∗L(k), dH , ~d∗(k + 1), . . . , ~d∗(T ))
(5)

simultaneously, so that a given buyer has no rational reason to deviate from the announced

collective strategy ~d∗(q, k) regardless of his true risk type. In other words, for a fixed d∗H(q, k)

(resp. d∗L(q, k)), if the buyer is low risk (resp. high risk), then it is optimal for him to

employ the reporting strategy corresponding to d∗L(q, k) (resp. d∗H(q, k)) at time k, and

d∗L(·, k + 1), . . . , d∗L(·, T ) (resp. d∗H(·, k + 1), . . . , d∗H(·, T )) thereafter.

The insurance market will exhibit a stable equilibrium if the above collective-compatability

condition (5) is satisfied for exactly one pair (d∗L(k), d∗H(k)). In such a case we say that an

equilibrium exists, and we define the value function of a buyer of type X at time k− to be

(6) WX(k, q) , VX(k, q)(~d∗(k), . . . , ~d∗(T ))

for a given rating q = q(k − 1), k = 1, . . . , T .
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4. Case Study

We now study a simple example in which there are two periods, the buyers are risk

neutral, and the premium equals the expected discounted payout with a proportional risk

load. Specifically T = 2, the loss function U is given by U(x) = x, and the time-k premium

f is given by

(7) f(q(k), ~d(q(k), k + 1)) = (1 + θ)v [pHdH(k + 1)q(k) + pLdL(k + 1)(1− q(k))] ,

for some proportional risk load θ ≥ 0 and for k = 0, 1. For simplicity, we assume that the

discount v used by the buyer and the insurer are identical. Any difference between them

could be absorbed in the factor of (1+θ) by allowing θ to take values greater than −1 instead

of 0.

Since there are only two periods, in the second (last) period the buyer has no incentive

to non-report, so that trivially (d∗L(q, 2), d∗H(q, 2)) = (1, 1). In the first period, the premium

paid is a function of the insurer’s prior q(0) and the reporting strategy at time 1; however,

at time 1, the buyer chooses his strategy to minimize future expected costs, so the premium

paid at time 0 is irrelevant at that time. Note that the premium paid at time 1 equals

f(q(1), ~d(q(1), 2)) ≡ f(q) = (1 + θ)v(pHq + pL(1 − q)) = (1 + θ)vpL + α2q, in which α ,√
(1 + θ)v(pH − pL). In other words, the insurer charges a base premium (1 + θ)vpL plus

a surcharge proportional to the updated risk rating q = Pq(0)(X = H|F1) of the agent, the

proportionality constant being α2.

Henceforth, we focus on the expected costs of the low and high risks at time 1. For

typographical convenience, we omit time-dependence and q-dependence of the strategies at

time 1 and write dH = dH(·, 1) and dL = dL(·, 1). From (4), the expected costs at time 1 for

a risk of type X = L, H equals

VX(q)(dL, dH) = pX(1− dX) + (1− pXdX)f(q−) + pXdXf(q+)(8)

= α2q− + α2pX dX (q+ − q−)− pX dX + C̄X ,

in which q = q(0), the updated beliefs (q−, q+) = G(q, dL, dH) are defined in (1), and the

constant C̄X = pX + (1 + θ)vpL is independent of (dL, dH).

4.1. Uniqueness of Equilibrium. Our first result shows that at most one equilibrium

(d∗L, d∗H) satisfying (5) exists in this case.

Lemma 1. The function VL is concave in the reporting strategy dL; the function VH is convex

in the reporting strategy dH .
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Proof. We directly compute

∂VL

∂dL

= −pL + α2pLq2

{
(pHdH)2

[pHdHq + pLdL(1− q)]2
− (1− pHdH)2

[(1− pHdH)q + (1− pLdL)(1− q)]2

}
,

(9)

which is a strictly decreasing function of dL. Indeed, the first term in the brackets is of the

form C1/(C2 + dL)2, and the second term is of the form −C3/(C4− dL)2, for some constants

Ci ≥ 0.

Similarly,

∂VH

∂dH

= −pH + α2pH(1− q)2

{
(1− pLdL)2

[(1− pHdH)q + (1− pLdL)(1− q)]2
− (pLdL)2

[pHdHq + pLdL(1− q)]2

}(10)

=
C1

(C2 − dH)2
− C3

(dH + C4)2
+ C5,

for some Ci ≥ 0; thus, ∂VH

∂dH
is a strictly increasing function of dH . �

The above lemma immediately implies the following key theorem.

Theorem 1. The optimal reporting strategy for low risks satisfies d∗L ∈ {0, 1}. More pre-

cisely, by comparing VL at dL = 0 with the cost at dL = 1, we obtain that low risks report all

claims, namely d∗L = 1, if and only if

1 ≥ α2q(1− q)

(1− pHdH)q + (1− q)

{
(1− pL)(1− pHdH)

(1− pHdH)q + (1− pL)(1− q)
+

pHdH − pL(1− pHdH)

pHdHq + pL(1− q)

}
.

(11)

Thus, for the low-risk types, pure reporting strategies (either always report or never report)

are the only optimal strategies. On the other hand, since VH is convex, typically d∗H will be

strictly between zero and one, so high-risk types use a randomized strategy.

Corollary 1. In equilibrium, the high-risk buyer reports some of his losses, that is, d∗H > 0.

Proof. The possibility that d∗L = 0 and d∗H = 0 is disallowed since in that case, no claims

are ever reported and the insurer has no mechanism to update beliefs. In particular, q+ is

undefined, q− = q, and (11) holds because the right-hand side is negative when dH = 0,

which contradicts d∗L = 0. So, we can assume d∗L > 0, and by evaluating (10), we obtain

∂VH

∂dH

∣∣∣∣
dH=0

= −pH + α2pH(1− q)2

{
(1− pLdL)2

[q + (1− pLdL)(1− q)]2
− (pLdL)2

[pLdL(1− q)]2

}
= −pH + α2pH

{
[(1− pLdL)(1− q)]2

[q + (1− pLdL)(1− q)]2
− 1

}
< 0.
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Thus, as a function of dH , VH is initially decreasing and achieves its minimum at a point

strictly greater than 0. �

This corollary relies on the assumption that pL > 0. See Section 5.2 for study of equilibria

in the degenerate case for which pL = 0.

The next two lemmas study the case d∗L = 0 and 0 < d∗H < 1, whereby low risks self-insure

during period 1 and high risks employ a mixed reporting strategy.

Lemma 2. The optimal strategy is

d∗L = 0, and 0 < d∗H = d̃H ,
1− (1− q)α

pHq
< 1,

if and only if α > 1 and the initial rating satisfies q̃ < q < α−1
α−pH

, in which

(12) q̃ , 1− α− 1

α− pL

· 2α− pL − α · pL

2α(α− 1) + pL

.

If q̃ > α−1
α−pH

, then there are no prior q’s such that d∗L = 0 and 0 < d∗H < 1 is optimal.

Proof. Assuming that optimal d∗H is strictly between 0 and 1 implies that the first-order

condition for VH must hold. Therefore

0 =
∂VH

∂dH

∣∣∣
dH=d∗H ,dL=0

= −pH + α2pH(1− q)2 1

[(1− pHd∗H)q + (1− q)]2

⇔ 1 =
α2(1− q)2

(1− pHd∗Hq)2

⇔ d∗H = d̃H =
1− (1− q)α

pHq
.

To satisfy the constraint 0 < d̃H < 1, one must have α > 1 and α−1
α

< q < α−1
α−pH

. At the

same time, to satisfy d∗L = 0 at d∗H = d̃H , we must have

1 <
α2q(1− q)

(1− pH d̃H)q + (1− q)

{
(1− pL)(1− pH d̃H)

(1− pH d̃H)q + (1− pL)(1− q)
+

pH d̃H − pL(1− pH d̃H)

pH d̃Hq + pL(1− q)

}

⇔ 1 < α

[
(1− pL)(α− 1)

α− pL

+
1− (α− pL + αpL)(1− q)

1− (α− pL)(1− q)

]
⇔ q̃ < q.

It can be shown that q̃ > α−1
α

always, so that the lower bound for both conditions to hold is

q̃ < q and the lemma follows. �

Note that for α − 1 small enough, q̃ > α−1
α−pH

; therefore, the two conditions above cannot

be simultaneously satisfied, so that the scenario d∗L = 0 and 0 < d∗H < 1 is ruled out.

Lemma 3. If d∗L = 0 and 0 < d∗H < 1, then WL(1, q) = pL − α + (1 + θ)vpH .
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Proof. From (8) with X = L, one can check that VL(1, q)(dL = 0, dH = d̃H) simplifies to the

above expression. �

4.2. Perfect Reporting. We term the case (d∗L, d∗H) = (1, 1) the first-best outcome since it

represents the situation for which the buyer has no incentive to withhold information and,

therefore, avoids ex post moral hazard. When d∗X < 1, the implicit deductibles are inefficient

and are an externality of the information asymmetry; that is, the buyer pays the losses

himself because the insurer cannot efficiently monitor his type. Thus, the presence of an

equilibrium with d∗X < 1 for either X = L or H is a sign of something “breaking down” in

the system. Accordingly, it is important to understand the parameter values that lead to

full reporting and avoid such externalities.

Lemma 4. We have that (d∗L, d∗H) = (1, 1) for any parameter values when q is sufficiently

small (close to zero) or sufficiently large (close to one). Moreover, the interval of q’s for

which (d∗L, d∗H) = (1, 1):

• Increases in width as the risk loading θ decreases.

• Increases in width as the high-type riskiness pH decreases;

• Increases in width as the low-type riskiness pL increases;

Proof. In order for (d∗L, d∗H) = (1, 1), it is necessary and sufficient that (11) hold with dH = 1

and that (10) be non-positive at (dL, dH) = (1, 1). By substituting (dL, dH) = (1, 1) into

(11) and (10), these two conditions become, respectively,

(13) 1 ≥ IL, and 1 ≥ IH ,

in which

(14) IL =
α2q(1− q)

1− pHq

[
(1− pL)(1− pH)

1− pL − (pH − pL)q
+

pH − pL(1− pH)

pL + (pH − pL)q

]
,

and

(15) IH = α2(1− q)2

[
(1− pL)2

[1− pL − (pH − pL)q]2
− p2

L

[pL + (pH − pL)q]2

]
.

It is an easy check that as q → 0+ or q → 1−, IL and IH converge to zero; therefore, because

IL and IH are continuous functions of q, the inequalities in (13) are satisfied for q ∼ 0 and

q ∼ 1.

Moreover, since α2 = (1 + θ)v(pH − pL) is a linear multiplier in IL and IH , smaller values

of θ decrease IL and IH , thereby, making the inequalities in (13) more likely. Similarly, one

can show that the derivatives of IL and IH are positive with respect to pH and negative with

respect to pL leading to the comparative statics stated in the lemma. �
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The economic intuition behind these results is that when q is very small or very large, the

gain from non-reporting is minimal since it is very hard to change the beliefs of the insurer

(that is, q−, q+ are very close to q); therefore, full reporting is best. This is consistent

with empirical observations that show that very low-risk and very high-risk buyers typically

report all their accidents since they “have nothing to lose.” For instance, in the Netherlands

auto insurance study by Abbring et al. (2007), the premia of the safest drivers (experience

rating 20) and of the worst drivers (experience rating 1) do not increase after an accident;

thus, there is essentially no gain from under-reporting.

Similarly, if the risk loading θ is relatively small, the benefit from non-reporting (through

lowering one’s future premium) is not enough to outweigh the cost that comes from concealing

information about one’s type, so full reporting is optimal. Also, if the difference pH − pL

shrinks, then there is less opportunity to distinguish high and low types and, therefore, less

gain from manipulating q± via non-reporting.

Our second result, which uses the above proof, shows that the buyer only has incentive to

settle out-of-pocket (self-insure) when the risk loading is sufficiently large.

Corollary 2. (d∗L, d∗H) = (1, 1) for all q ∈ [0, 1] whenever α2 = (1 + θ)v(pH − pL) ≤ 1.

Proof. IL in (14) is a decreasing function of pL and is an increasing function of α. Moreover,

when pL = 0 and α = 1, IL equals 1−q
1−pHq

[
q(1−pH)
1−pHq

+ 1
]
, which is less than or equal to 1

because q(1−pH)
1−pHq

≤ 1−pHq
1−q

− 1 = q(1−pH)
1−q

.

Similarly, IH in (15) is increasing in pH , and by taking pH = 1 and α = 1, we find that

IH = 1− p2
L(1− q)2

(q + pL(1− q))2
≤ 1.

Therefore, both equalities in (13) are satisfied whenever α ≤ 1, so d∗L = d∗H = 1 in that

case. �

The sufficient condition in Corollary 2 is consistent with the intuition that non-reporting

is a form of market break-down and should only occur if the market is sufficiently inefficient

(that is, insurance is mandatory but carries an excessive risk loading).

The set of q’s for which both inequalities in (13) are satisfied can consist of two or three

disjoint intervals. Figure 2 illustrates this phehomenon. We see that the second inequality

in (13), namely 1 ≥ IH , dominates for small q and the first inequality, namely 1 ≥ IL,

dominates for large q. That is, there is q such that d∗H = 1 and d∗L = 1 for q ∈ [0, q], and just

above q = q we switch to d∗L = 1 and d∗H < 1. Similarly, there is a q̄ such that for q ∈ [q̄, 1],

we again have d∗L = 1 and d∗H = 1, and just below q = q̄ we switch to d∗L = 0 and d∗H = 1.

Additionally, for some values of α, there may be a third interval of q’s in which both

inequalities in (13) are satisfied. This is illustrated when α = 1.215 for q near 0.33 in Figure
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Figure 2. IL and IH in (14) and (15), respectively, as functions of the initial

belief q for pL = 0.2, pH = 0.8, and α = 1.215. The three intervals of q where

max(IL, IH) < 1 are highlighted in black on the x-axis.

2 and is also illustrated in the second panel of Figure 3 for α = 1.215. Note that the first

inequality in (13) is cubic in q and the second is quartic in q, so that although analytic

expressions exist for q and q̄ above, they are quite complicated.

5. Classification of Optimal Strategies in the Case Study

A variety of reporting strategies are possible in the simple two-period model from the

previous section.

(1) Full reporting: d∗L = 1 and d∗H = 1, that is, all buyers report all accidents. This

equilibrium holds if the cost from self-imposed deductibles outweighs any gain from

information manipulation. Since information sensitivity is small for q’s close to 0 or

1, in particular, this outcome happens for buyers whose risk type is essentially known

a priori as demonstrated in Lemma 4.

(2) Obscuring high risk: d∗L = 1 and d∗H < 1, that is, low-risk buyers report all losses,

and some of the losses generated by high risks are self-absorbed. The effect of such a

policy is to reduce the information gain from observing a claim as the rate of reporting

losses pXdX is similar for both risks.

(3) Obscured signaling: d∗L = 0 and 0 < d∗H < 1, that is, low-risk buyers absorb all

losses, and some of the insurable events of the high-risk buyers are also not reported.

The effect is that a reported claim is a clear signal that the buyer is a high risk.

However, due to a large proportion of out-of-pocket settlements, losses are filed very
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infrequently. Such a policy may arise if the expected out-of-pocket costs are small

for low-risk types relative to the gain of moving q−.

(4) Clear signaling: d∗L = 0 and d∗H = 1, that is, low risks report no losses, while high

risks reports all losses. Again, a reported loss is a clear signal that the buyer is a

high risk. It may occur for medium values of q at which the cost for a high risk is

sufficiently high to make Case 3 above sub-optimal.

(5) No equilibrium (No-Eqm): There is no pair (d∗L, d∗H) that satisfies the consistency

condition (5). Thus, in this case Bayesian learning essentially fails since there is

no reporting strategy that is rationally optimal. In our numerical experiments, we

observe that No-Eqm arises as a transition phase between Cases 2 and 3 above. In

the transition from Case 2 to Case 3, both d∗L and d∗H change simultaneously, with

the former changing discontinuously, which is impossible.

Due to the discrete nature of d∗L, as model parameters vary, the equilibrium strategy ex-

hibits instantaneous phase transitions whence an infinitesimal change in a parameter causes

a shift from one type of equilibrium to another. In particular, negligible changes in the

prior q can lead to radically different equilibria. In the next subsection, we investigate these

transitions more closely.

In the next lemma, we show that even though high risks might attempt to mimic low risks

by settling some losses out-of-pocket, as in Cases 2 and 3, they always appear more risky to

the insurer. This is intuitive since one expects that reporting a loss is a signal of riskiness,

rather than its opposite, so that q+ > q.

Lemma 5. The reporting frequency observed by the insurer pXdX maintains the risk order,

that is, pLd∗L < pHd∗H .

Proof. We have two cases to consider: (1) d∗L = 1, and (2) d∗L = 0. If d∗L = 1, then by

substituting dL = 1 and dH = pL/pH into (10), we obtain

∂VH

∂dH

= −pH < 0,

which implies that d∗H > pL/pH by convexity of VH . It follows that pHd∗H > pL = pLd∗L.

We know from Corollary 1 that d∗H > 0, so that if d∗L = 0, then we automatically have

pHd∗H > pLd∗L. �

Note that in the case for which d∗L = 0, it is possible to have pHd∗H < pL. Indeed, by

substituting dH = d̃H and dL = 0 into (10), we obtain ∂VH

∂dH
= 0. Thus, pHd∗H = pH d̃H =

α− α−1
q

. It is possible that α− α−1
q

< pL; for example, take α = 1.5, q = 0.5, and pL = 0.8.
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Figure 3. Optimal buyer strategies as a function of the prior q(0) for different

values of α. We plot d∗H , with a dashed red line indicating where d∗L = 0 and

blue diamonds indicating where d∗L = 1.

5.1. Classification of Phase Transitions according to α. In our numerical work, we

find four possible type of phase transitions, three of which appear in Figure 3 (the phase

labels refer to the classification in the beginning of Section 5):

(1) α ≤ 1: Corollary 2 implies that the equilibrium is always Case 1, full reporting for

all risk types. This also happens for α− 1 being small, see top panel of Figure 3;

(2) α ≥ 1 small (for example, α = 1.15): 1 → 4 → 1 (high risk always reports, no

randomized strategies);
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(3) α ≥ 1 moderate (for example, α = 1.215): 1 → 2 → 1 → 5 → 3 → 4 → 1 (second

panel);

(4) α ≥ 1 large (for example, α = 2): 1 → 2 → 5 → 3 → 4 → 1 (third and fourth

panels;)

5.2. Limiting Cases. In this section, we study a variety of limiting cases with respect to

the parameters of the model.

pL = 0. In this case, low-risk types never have accidents; accordingly, d∗L is indeterminate.

Indeed, when pL = 0, VL = v(1+ θ)pH(1−pHdH)q/(1−pHdHq), which is independent of dL.

Although there is no unique value of dL that minimizes VL when dH = d∗H , we still say that

an equilibrium exists with d∗H ∈ [0, 1] equal to the minimizer of VH because the (intended)

actions of the low risks are irrelevant when pL = 0.

It is easy to show that dH = d̃H = 1−α(1−q)
q pH

minimizes VH when pL = 0. By examining the

possible values of d̃H , we obtain the following:

(1) If q ≤ α−1
α

, then d̃H ≤ 0, which implies that d∗H = 0;

(2) If α−1
α

< q < α−1
α−pH

, then 0 < d̃H < 1, which implies that d∗H = d̃H ;

(3) If q ≥ α−1
α−pH

, then d̃H ≥ 1, which implies that d∗H = 1.

No discontinuous phase transitions are present because VH is continuous in q. See the

illustration in the top panel of Figure 4.

pL = pH. In this case, ∂VL

∂dL
= −pL < 0, and ∂VH

∂dH
= −pH < 0. Thus, d∗L = 1 = d∗H . This

first-best outcome makes sense because there is no reason not to report a loss due to the fact

that there is no difference between the risk classes.

pH = 1. In this case, high-risk types are guaranteed to have claims. This accentuates ex

post moral hazard because high risks have a strong incentive to hide their claims and “mas-

querade” as low risks. We find the following:

(1) d∗L = 0 and d∗H = d̃H = 1−α(1−q)
q

∈ (0, 1) if and only if α > 1 and q̃ < q < 1, in which

q̃ is given in (12).

(2) d∗L = 1 and d∗H = d̃H = 1−α(1−q)
q

∈ (0, 1) if and only if (11) holds at dH = d̃H and
∂VH

∂dH
> 0 at dL = 1 = dH . The latter condition holds if and only if α > 1 and

q ∈
(
pL

α
√

α2−1−α2+(1−pL)
α2(1−2pL)−(1−pL)2

, 1
)
.

As α approaches 1, the lower bound on the interval for q converges to 1. The lower

bound decreases with respect to α, so that as the risk loading θ increases, it is more

likely that d∗H < 1 in this case. Also, if α2(1− 2pL) = (1− pL)2, then the interval for

q becomes
(

1−2pL

2(1−pL)
, 1

)
.
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To find the values of q such that (11) holds at dH = d̃H requires solving a cubic

inequality in q, so although there is an analytical solution for such an inequality, it

is not simple.

(3) d∗L = 1 = d∗H if and only if α ≤ 1 or both α > 1 and q ∈
[
0, pL

α
√

α2−1−α2+(1−pL)
α2(1−2pL)−(1−pL)2

]
∪

{1}.
(4) No-Eqm is also possible; see the bottom panel of Figure 4.

Note that when pH = 1, an equilibrium with d∗L = 0 and d∗H = 1 is not possible. Indeed

to have it, one needs
1 <

α2q

q + pL(1− q)
, that is, dL = 0 is optimal when dH = 1;

1 ≤ d̃H =
1− α(1− q)

q
, that is, dH = 1 is optimal when dL = 0;

which are impossible to satisfy together for any 0 ≤ q ≤ 1.

q = 0. d∗L = 1 because (11) holds when q = 0. Also, ∂VH

∂dH
= −pH < 0 when q = 0 and

dL = 1; thus, d∗H = 1. This result makes sense because when q = 0, the updated Bayesian

belief is still q+ = 0, so there is no penalty for reporting a loss.

q = 1. As in the previous case, d∗L = 1 because (11) holds when q = 1. Also, ∂VH

∂dH
= −pH < 0

when q = 1 and dL = 1; thus, d∗H = 1. This result makes sense because when q = 1, the

updated value q− = 1, so there is no possible gain from not reporting a loss.

θ or α large. Our final result shows that as the risk loading θ increases, which makes α

increase, the game breaks down and no equilibrium is possible.

Lemma 6. For any fixed q ∈ (0, 1), there is an α large enough, such that there is no

equilibrium for the two-period model.

Proof. Fix q ∈ (0, 1). If an equilibrium exists, then either d∗L = 0 or d∗L = 1. Suppose

d∗L = 0; then, when dL = 0, ∂VH

∂dH
= −pH + pH

α2(1−q)2

(1−pHdHq)2
, which is positive for all dH ∈ [0, 1]

for α > 1/(1− q), from which it follows that d∗H = 0. This result contradicts Corollary 1, so

we cannot have d∗L = 0.

Next, suppose d∗L = 1; by looking at (10), we see that if α is large enough, then ∂VH/∂dH

is determined by the sign of the expression in the curly brackets. It is easy to check that

that expression is negative for dH < pL/pH and positive for dH > pL/pH . Therefore, for α

large, VH achieves its minimum at dH = pL/pH + ε, in which ε→ 0+ as α→∞. Specifically,

α and ε are related as follows:

α2 =
1

(1− q)2

[(
1− pL

1− pL − εpHq

)2

−
(

pL

pL + εpHq

)2
]−1

.
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Figure 4. Optimal (d∗L, d∗H) for limiting cases: pL = 0 and pH = 0.8 for the

top panel; pL = 0.2 and pH = 1 for the bottom panel. The format of the figure

is same as that of Figure 3.

By substituting dH = pL/pH + ε into (11), we obtain 1 ≥ α2q(1−q)
1−pLq

· (1 + O(ε)), which is a

contradiction when α is large. Thus, d∗L = 1 is also impossible. �

5.3. Value Functions. By solving for d∗L and d∗H and substituting these values into VL and

VH , we obtain the value functions WL(q) and WH(q), respectively. In the case of No-Eqm,

WL and WH are undefined, but one can set WL = WH = +∞ there, so that individuals avoid

having an updated q lie in the region of No-Eqm. This is not important in a two-period

model but becomes relevant once more periods are considered.

We find that WL is a non-decreasing continuous function of q; so that for a low-risk type,

the higher the original rating, the lower the expected cost to the buyer. Also, recall from

Lemma 3 that WL is constant on the set {q : d∗L = 0, d∗H < 1}. Surprisingly, we find that WH

is not monotone, nor continuous with respect to q. In particular, WH experiences a negative

jump at q̂ where we switch from d∗L = 0, d∗H = 1 to d∗L = 1, d∗H = 1 (around q ∼ 0.95 in

Figure 5).
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Figure 5. Optimal value functions WL(1, q) and WH(1, q) as functions of the

prior q for same parameters as top-left panel of Figure 3; we plot WH with a

black solid line and WL with a dashed green line. Inside the No-Eqm region

in the middle the value functions are undefined. We also indicate on the x-

axis the region [q1, q2] = [q̃, α−1
α−pH

] = [0.4344, 0.7143] of Lemma 3. Note the

discontinuity of WH at q = 0.924.

6. Extensions of the Case Study

The analysis of the case study presented in the previous two sections provides insight into

the more general settings of our model. In this section, we discuss how the above results

carry over in general.

6.1. General premium rules. First, we consider general premium rules rather than the

linear function used in Sections 4 and 5. These rules might arise due to non-linear pricing

mechanisms employed by the insurer. For instance, it is common practice that the premium

paid is most elastic for buyers with uncertain risk profiles (medium q’s), while it is relatively

inelastic for buyers that belong to a given type with high probability; see, for example,

Table 1 in Abbring et al. (2007). Such pricing rules can be represented by an “arctangent”-

shaped premium function f(q). Alternatively, insurance regulations might state that high-

risk buyers should be penalized for being “careless” (in terms of ex ante moral hazard), so

that f(q) would be convex in that case.

A non-linear premium rule can be viewed as an extension of the linear case, with the

risk-loading α being a function of the current rating q. Consider first a piecewise linear f(q);

in that case, since the main problem (5) is optimized locally for each q, one may treat each
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linear interval of f(q±) separately and then combine the results. Therefore, the resulting

reporting strategies will be a combination of the outcomes observed in Sections 4 and 5. Of

course, for some ratings q, depending on the value of ~d, q± will be on different segments

of f , in which case a more complicated equilibrium may emerge. In particular, VL might

no longer be concave. As a result, it is possible that 0 < dL < 1 is optimal; also multiple

solutions of (5) may exist.

6.2. More than two periods. Non-linear pricing rules also arise in the case of a multi-

period model with more than two periods. In that case, the next-period value function

VX(k+1, ·), as well as the next period premium f(q(k), ~d(k+1)), enter into the optimization

problem. Even if f itself is linear, the non-linear features in ~d(k + 1) (which arise as soon as

non-reporting is optimal for some q’s), and in VX make the “effective” next-period premium

non-linear in current rating. This can be seen in Figure 5, where the value functions are

highly non-linear, including points of discontinuity and intervals of constancy.

With more than two periods, the buyer has a stronger incentive to manipulate his rating

early on, since he anticipates that it will affect his expected costs for several periods into

the future. For instance, with T = 3 and a small α = 1.1, the solution structure is that

d∗X(2) = 1 for X = L and H, but d∗X(1) belongs to a variety of equilibrium phases with the

overall picture similar to the third and fourth panels of Figure 3.

A multi-period problem also requires considering the precise interpretation of what hap-

pens in the case of No-Eqm or multiple solutions to (5). An orthodox solution is to set V to

be undefined in such cases; this would rule out solutions for nearly all q after several periods,

since the non-defined regions expand as more periods are added because at each step all

possible updates q± must be inside the defined region.

One may also consider the infinite-horizon problem, whence (4) is replaced by the time-

stationary version

HX(q)(~d) = pX

[
dX

(
U(f(q+, ~d)) + vHX(q+)(~d)

)
+ (1− dX)

(
U(1 + f(q−, ~d)) + vHX(q−)(~d)

)]
+ (1− pX)

[
U(f(q−, ~d)) + vHX(q−)(~d)

]
.

Heuristically, one expects that W (k, q)→ H(q) as k →∞. However, given the complications

arising already with two or three periods, this does not appear to be a feasible way of

computing H. Also, on an infinite horizon, the learning problem of the insurer must be

treated differently. Indeed, given a sufficiently large claim history and an equilibrium solution

to the insurance reporting problem, the insurer can determine the risk type of the buyer to

an arbitrary degree of precision (since she can infer his reporting strategy). In other words,
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q(k) → 1X as k → ∞ almost surely. Therefore, with an infinite horizon (and hence infinite

past history), the insurer will, in fact, know the true type of the buyer with certainty.

6.3. Other extensions. Finally, many other cases can be considered. The buyers can

belong to multiple risk types, in which case the insurer’s beliefs are not one-dimensional as

in case study, but live in the general space D. In that case, in the two-period setting, in the

first period, we still expect the lowest risk type either to always report or to never report

losses, with the same ordering of the reporting frequency pXdX that we obtained in Lemma

5.

The claim sizes Yi may also be varying; under the assumption that the buyer must either

report the full amount or nothing at all (so that underreporting is not possible), this becomes

a variation of our model in which the claim probabilities pX are modified by the claim size

distribution fX(y) and reporting strategy ~d(y) depends on the claim size. In that case, the

update rule (1) becomes



q+(dL, dH)(y) = Pq(X = H|Y = y) =
pHfH(y) · dH(y) · q

pHfH(y) · dH(y) · q + pLfL(y) · dL(y) · (1− q)
,

q−(dL, dH) = Pq(X = H|Y = 0)

=
(1− pH

∫∞
0

dH(y) · fH(dy)) · q
1−

∫∞
0

(pHdH(y) q fH(dy) + pLdL(y) (1− q) fL(dy))
.

(16)

The resulting problem is now infinite-dimensional in the buyer’s strategy dX(y), X ∈ E, y ∈
R+, and we will study this problem in future work. Intuitively, higher claims are more costly

to self-absorb; therefore, we expect a self-imposed deductible Ded(q) to emerge such that

dX(q, y) = 1 for all y > Ded(q) and dX(q, y) < 1 for y ≤ Ded(q).

7. Summary and Conclusions

In this paper, we studied an asymmetric information insurance problem with ex post

moral hazard. Since the buyer has the option of not reporting losses, and since his premia

are based on his experience rating, the buyer will strategically manipulate the claim informa-

tion received by the insurer. Equilibrium reporting strategies depend on the joint strategic

behavior of all risk types, and upon the assumption that the insurer updates the risk ratings

via Bayesian conditioning and anticipates the optimal reporting strategies when setting the

premia.

We find that even in a simple case study with two periods, linear risk premia, and risk-

neutral (but captive) buyers, non-trivial reporting strategies might be optimal. In particular,

the behavior of different risk types can be quite varied, ranging from total non-reporting,
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full reporting, and mixed strategies. We also find that the equilibrium strategies are highly

sensitive to the buyer’s current risk rating and exhibit abrupt phase shifts as the risk rating

varies. Such features are expected to be even more pronounced in more general model

settings and showcase the complexity of the underlying insurance markets. Our work provides

probabilistic underpinnings to anecdotal evidence of ex post moral hazard in real-life private

automobile and homeowner’s insurance markets.
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